Cargando…
Progressive Deep Learning Framework for Recognizing 3D Orientations and Object Class Based on Point Cloud Representation †
Deep learning approaches to estimating full 3D orientations of objects, in addition to object classes, are limited in their accuracies, due to the difficulty in learning the continuous nature of three-axis orientation variations by regression or classification with sufficient generalization. This pa...
Autores principales: | Lee, Sukhan, Yang, Yongjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468838/ https://www.ncbi.nlm.nih.gov/pubmed/34577315 http://dx.doi.org/10.3390/s21186108 |
Ejemplares similares
-
Recognizing Objects in 3D Point Clouds with Multi-Scale Local Features
por: Lu, Min, et al.
Publicado: (2014) -
Data-Driven Point Cloud Objects Completion
por: Zhang, Yang, et al.
Publicado: (2019) -
Transfer Learning Based Semantic Segmentation for 3D Object Detection from Point Cloud
por: Imad, Muhammad, et al.
Publicado: (2021) -
Deep Learning on Point Clouds and Its Application: A Survey
por: Liu, Weiping, et al.
Publicado: (2019) -
A Deep Learning Framework for Recognizing Both Static and Dynamic Gestures
por: Mazhar, Osama, et al.
Publicado: (2021)