Cargando…
How to Promote the Performance of Parametric Volatility Forecasts in the Stock Market? A Neural Networks Approach
This study uses the fourteen stock indices as the sample and then utilizes eight parametric volatility forecasting models and eight composed volatility forecasting models to explore whether the neural network approach and the settings of leverage effect and non-normal return distribution can promote...
Autor principal: | Su, Jung-Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468884/ https://www.ncbi.nlm.nih.gov/pubmed/34573776 http://dx.doi.org/10.3390/e23091151 |
Ejemplares similares
-
Does oil price uncertainty matter in stock market volatility forecasting?
por: Qin, Peng, et al.
Publicado: (2022) -
Integration of genetic algorithm with artificial neural network for stock market forecasting
por: Sharma, Dinesh K., et al.
Publicado: (2021) -
Volatility connectedness of GCC stock markets: how global oil price volatility drives volatility spillover in GCC stock markets?
por: Hussain, Muntazir, et al.
Publicado: (2022) -
Modelling stock market volatility.
Publicado: (1996) -
Housing market forecasts via stock market indicators
por: Mittal, Varun, et al.
Publicado: (2023)