Cargando…

Isotherm and Electrochemical Properties of Atrazine Sensing Using PVC/MIP: Effect of Porogenic Solvent Concentration Ratio

Widespread atrazine use is associated with an increasing incidence of contamination of drinking water. Thus, a biosensor using molecularly imprinted polymers (MIPs) was developed to detect the amount of atrazine in water to ensure prevention of exposure levels that could lead to reproductive effects...

Descripción completa

Detalles Bibliográficos
Autores principales: Che Lah, Nuur Fahanis, Ahmad, Abdul Latif, Low, Siew Chun, Zaulkiflee, Nur Dina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468889/
https://www.ncbi.nlm.nih.gov/pubmed/34564474
http://dx.doi.org/10.3390/membranes11090657
_version_ 1784573788404318208
author Che Lah, Nuur Fahanis
Ahmad, Abdul Latif
Low, Siew Chun
Zaulkiflee, Nur Dina
author_facet Che Lah, Nuur Fahanis
Ahmad, Abdul Latif
Low, Siew Chun
Zaulkiflee, Nur Dina
author_sort Che Lah, Nuur Fahanis
collection PubMed
description Widespread atrazine use is associated with an increasing incidence of contamination of drinking water. Thus, a biosensor using molecularly imprinted polymers (MIPs) was developed to detect the amount of atrazine in water to ensure prevention of exposure levels that could lead to reproductive effects in living organisms. In this study, the influence of the porogen on the selectivity of MIPs was investigated. The porogen plays a pivotal role in molecular imprinting as it affects the physical properties and governs the prepolymerization complex of the resulting polymer, which in turn firmly defines the recognition properties of the resulting molecularly imprinted polymer (MIP). Therefore, bulk MIPs against atrazine (Atr) were synthesized based on methacrylic acid (MAA) as a functional monomer and ethyleneglycol dimethacrylate (EGDMA) as a crosslinker; they were prepared in toluene and dimethyl sulfoxide (DMSO). The imprinting factor, binding capacity, and structural stability were evaluated using the respective porogenic solvents. Along with the characterization of the morphology of the obtained polymers via SEM and BET analysis, the kinetic and adsorption analyses were demonstrated and verified. The highest imprinting factor, binding capacity, and the highest structural stability were found to be on polymer synthesized in a medium of MAA and EGDMA, which contained 90% toluene and 10% DMSO as porogen. Moreover, the response for Atr concentrations by the PVC-based electrochemical sensor was found to be at a detection limit of 0.0049 μM (S/N = 3). The sensor proved to be an effective sensor with high sensitivity and low Limit of Detection (LOD) for Atr detection. The construction of the sensor will act as a baseline for a fully functionalized membrane sensor.
format Online
Article
Text
id pubmed-8468889
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-84688892021-09-27 Isotherm and Electrochemical Properties of Atrazine Sensing Using PVC/MIP: Effect of Porogenic Solvent Concentration Ratio Che Lah, Nuur Fahanis Ahmad, Abdul Latif Low, Siew Chun Zaulkiflee, Nur Dina Membranes (Basel) Article Widespread atrazine use is associated with an increasing incidence of contamination of drinking water. Thus, a biosensor using molecularly imprinted polymers (MIPs) was developed to detect the amount of atrazine in water to ensure prevention of exposure levels that could lead to reproductive effects in living organisms. In this study, the influence of the porogen on the selectivity of MIPs was investigated. The porogen plays a pivotal role in molecular imprinting as it affects the physical properties and governs the prepolymerization complex of the resulting polymer, which in turn firmly defines the recognition properties of the resulting molecularly imprinted polymer (MIP). Therefore, bulk MIPs against atrazine (Atr) were synthesized based on methacrylic acid (MAA) as a functional monomer and ethyleneglycol dimethacrylate (EGDMA) as a crosslinker; they were prepared in toluene and dimethyl sulfoxide (DMSO). The imprinting factor, binding capacity, and structural stability were evaluated using the respective porogenic solvents. Along with the characterization of the morphology of the obtained polymers via SEM and BET analysis, the kinetic and adsorption analyses were demonstrated and verified. The highest imprinting factor, binding capacity, and the highest structural stability were found to be on polymer synthesized in a medium of MAA and EGDMA, which contained 90% toluene and 10% DMSO as porogen. Moreover, the response for Atr concentrations by the PVC-based electrochemical sensor was found to be at a detection limit of 0.0049 μM (S/N = 3). The sensor proved to be an effective sensor with high sensitivity and low Limit of Detection (LOD) for Atr detection. The construction of the sensor will act as a baseline for a fully functionalized membrane sensor. MDPI 2021-08-26 /pmc/articles/PMC8468889/ /pubmed/34564474 http://dx.doi.org/10.3390/membranes11090657 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Che Lah, Nuur Fahanis
Ahmad, Abdul Latif
Low, Siew Chun
Zaulkiflee, Nur Dina
Isotherm and Electrochemical Properties of Atrazine Sensing Using PVC/MIP: Effect of Porogenic Solvent Concentration Ratio
title Isotherm and Electrochemical Properties of Atrazine Sensing Using PVC/MIP: Effect of Porogenic Solvent Concentration Ratio
title_full Isotherm and Electrochemical Properties of Atrazine Sensing Using PVC/MIP: Effect of Porogenic Solvent Concentration Ratio
title_fullStr Isotherm and Electrochemical Properties of Atrazine Sensing Using PVC/MIP: Effect of Porogenic Solvent Concentration Ratio
title_full_unstemmed Isotherm and Electrochemical Properties of Atrazine Sensing Using PVC/MIP: Effect of Porogenic Solvent Concentration Ratio
title_short Isotherm and Electrochemical Properties of Atrazine Sensing Using PVC/MIP: Effect of Porogenic Solvent Concentration Ratio
title_sort isotherm and electrochemical properties of atrazine sensing using pvc/mip: effect of porogenic solvent concentration ratio
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8468889/
https://www.ncbi.nlm.nih.gov/pubmed/34564474
http://dx.doi.org/10.3390/membranes11090657
work_keys_str_mv AT chelahnuurfahanis isothermandelectrochemicalpropertiesofatrazinesensingusingpvcmipeffectofporogenicsolventconcentrationratio
AT ahmadabdullatif isothermandelectrochemicalpropertiesofatrazinesensingusingpvcmipeffectofporogenicsolventconcentrationratio
AT lowsiewchun isothermandelectrochemicalpropertiesofatrazinesensingusingpvcmipeffectofporogenicsolventconcentrationratio
AT zaulkifleenurdina isothermandelectrochemicalpropertiesofatrazinesensingusingpvcmipeffectofporogenicsolventconcentrationratio