Cargando…
A Novel Conflict Management Method Based on Uncertainty of Evidence and Reinforcement Learning for Multi-Sensor Information Fusion
Dempster–Shafer theory (DST), which is widely used in information fusion, can process uncertain information without prior information; however, when the evidence to combine is highly conflicting, it may lead to counter-intuitive results. Moreover, the existing methods are not strong enough to proces...
Autores principales: | Huang, Fanghui, Zhang, Yu, Wang, Ziqing, Deng, Xinyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469061/ https://www.ncbi.nlm.nih.gov/pubmed/34573847 http://dx.doi.org/10.3390/e23091222 |
Ejemplares similares
-
A Weighted Combination Method for Conflicting Evidence in Multi-Sensor Data Fusion
por: Xiao, Fuyuan, et al.
Publicado: (2018) -
Reinforcement Learning with Side Information for the Uncertainties
por: Yang, Janghoon
Publicado: (2022) -
Measuring Uncertainty in the Negation Evidence for Multi-Source Information Fusion
por: Tang, Yongchuan, et al.
Publicado: (2022) -
A Novel Evidence Conflict Measurement for Multi-Sensor Data Fusion Based on the Evidence Distance and Evidence Angle
por: Deng, Zhan, et al.
Publicado: (2020) -
Fuzzy Risk Evaluation in Failure Mode and Effects Analysis Using a D Numbers Based Multi-Sensor Information Fusion Method
por: Deng, Xinyang, et al.
Publicado: (2017)