Cargando…
Non-Invasive Hemodynamics Monitoring System Based on Electrocardiography via Deep Convolutional Autoencoder
This study evaluates cardiovascular and cerebral hemodynamics systems by only using non-invasive electrocardiography (ECG) signals. The Massachusetts General Hospital/Marquette Foundation (MGH/MF) and Cerebral Hemodynamic Autoregulatory Information System Database (CHARIS DB) from the PhysioNet data...
Autores principales: | Sadrawi, Muammar, Lin, Yin-Tsong, Lin, Chien-Hung, Mathunjwa, Bhekumuzi, Hsin, Ho-Tsung, Fan, Shou-Zen, Abbod, Maysam F., Shieh, Jiann-Shing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469191/ https://www.ncbi.nlm.nih.gov/pubmed/34577471 http://dx.doi.org/10.3390/s21186264 |
Ejemplares similares
-
Genetic Deep Convolutional Autoencoder Applied for Generative Continuous Arterial Blood Pressure via Photoplethysmography
por: Sadrawi, Muammar, et al.
Publicado: (2020) -
ECG Recurrence Plot-Based Arrhythmia Classification Using Two-Dimensional Deep Residual CNN Features
por: Mathunjwa, Bhekumuzi M., et al.
Publicado: (2022) -
Computational Depth of Anesthesia via Multiple Vital Signs Based on Artificial Neural Networks
por: Sadrawi, Muammar, et al.
Publicado: (2015) -
Arrhythmia Evaluation in Wearable ECG Devices
por: Sadrawi, Muammar, et al.
Publicado: (2017) -
Cardiopulmonary Resuscitation Pattern Evaluation Based on Ensemble Empirical Mode Decomposition Filter via Nonlinear Approaches
por: Sadrawi, Muammar, et al.
Publicado: (2016)