Cargando…
Stereospecific Epoxidation of Limonene Catalyzed by Peroxygenase from Oat Seeds
Limonene is one of the most abundant naturally occurring cyclic monoterpenes and has recently emerged as a sustainable alternative to petroleum-based solvents as well as a chemical platform for the production of value-added compounds. The biocatalytic epoxidation of both enantiomers of limonene was...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469233/ https://www.ncbi.nlm.nih.gov/pubmed/34573093 http://dx.doi.org/10.3390/antiox10091462 |
Sumario: | Limonene is one of the most abundant naturally occurring cyclic monoterpenes and has recently emerged as a sustainable alternative to petroleum-based solvents as well as a chemical platform for the production of value-added compounds. The biocatalytic epoxidation of both enantiomers of limonene was carried out in the presence of a peroxygenase-containing preparation from oat (Avena sativa) flour. Different reaction profiles were observed depending on the starting enantiomer of limonene, but in both cases the 1,2-monoepoxide was obtained as the main product with excellent diastereoselectivity. Trans-1,2-monoepoxide and cis-1,2-monoepoxide were isolated from the reaction of (R)-limonene and (S)-limonene, respectively, and the reactions were scaled-up to 0.17 M substrate concentration. The process is valuable for operational simplicity, lack of toxic metal catalysts, and cost-effectiveness of the enzymatic source. Pure stereoisomers of 1,2-monoepoxides of limonene constitute a useful starting material for biorenewable polymers, but can be also converted into other chiral derivatives by epoxide ring opening with nucleophiles. As a proof of concept, a tandem protocol for the preparation of enantiopure (1S,2S,4R)-1,2-diol from (R)-limonene and (1R,2R,4S)-1,2-diol from (S)-limonene was developed. |
---|