Cargando…
A Cost-Effective CNN-LSTM-Based Solution for Predicting Faulty Remote Water Meter Reading Devices in AMI Systems
Automatic meter infrastructure (AMI) systems using remote metering are being widely used to utilize water resources efficiently and minimize non-revenue water. We propose a convolutional neural network-long short-term memory network (CNN-LSTM)-based solution that can predict faulty remote water mete...
Autores principales: | Lee, Jaeseung, Choi, Woojin, Kim, Jibum |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469262/ https://www.ncbi.nlm.nih.gov/pubmed/34577436 http://dx.doi.org/10.3390/s21186229 |
Ejemplares similares
-
Intrusion Detection System in the Advanced Metering Infrastructure: A Cross-Layer Feature-Fusion CNN-LSTM-Based Approach
por: Yao, Ruizhe, et al.
Publicado: (2021) -
Detection of Corona Faults in Switchgear by Using 1D-CNN, LSTM, and 1D-CNN-LSTM Methods
por: Mohammed Alsumaidaee, Yaseen Ahmed, et al.
Publicado: (2023) -
Methaemoglobinemia - Faulty probe or faulty haemoglobin
por: Kishore, Kamal, et al.
Publicado: (2014) -
Water Meter Reading for Smart Grid Monitoring
por: Martinelli, Fabio, et al.
Publicado: (2022) -
CNN-Bi-LSTM: A Complex Environment-Oriented Cattle Behavior Classification Network Based on the Fusion of CNN and Bi-LSTM
por: Gao, Guohong, et al.
Publicado: (2023)