Cargando…

OXA-48 Carbapenemase-Encoding Transferable Plasmids of Klebsiella pneumoniae Recovered from Egyptian Patients Suffering from Complicated Urinary Tract Infections

SIMPLE SUMMARY: Gram-negative bacteria are common causes of urinary tract infections (UTIs), some of which can resist treatment by antibiotics, including carbapenems, which are last resort treatment options. This study aimed to report the resistance of some Gram-negative bacteria causing complicated...

Descripción completa

Detalles Bibliográficos
Autores principales: Elshamy, Ann A., Saleh, Sarra E., Alshahrani, Mohammad Y., Aboshanab, Khaled M., Aboulwafa, Mohammad M., Hassouna, Nadia A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469419/
https://www.ncbi.nlm.nih.gov/pubmed/34571766
http://dx.doi.org/10.3390/biology10090889
_version_ 1784573926283673600
author Elshamy, Ann A.
Saleh, Sarra E.
Alshahrani, Mohammad Y.
Aboshanab, Khaled M.
Aboulwafa, Mohammad M.
Hassouna, Nadia A.
author_facet Elshamy, Ann A.
Saleh, Sarra E.
Alshahrani, Mohammad Y.
Aboshanab, Khaled M.
Aboulwafa, Mohammad M.
Hassouna, Nadia A.
author_sort Elshamy, Ann A.
collection PubMed
description SIMPLE SUMMARY: Gram-negative bacteria are common causes of urinary tract infections (UTIs), some of which can resist treatment by antibiotics, including carbapenems, which are last resort treatment options. This study aimed to report the resistance of some Gram-negative bacteria causing complicated UTIs to carbapenems at two important hospitals in Cairo, Egypt, and to determine the possible transfer of this resistance to other bacterial species. The collected bacteria were tested for antibiotic resistance and detection of the genes responsible for this resistance. A total of 256 Gram-negative bacterial clinical isolates were collected, 65 (25.4%) of which showed carbapenem resistance. The detected carbapenem resistance genes were bla(OXA-48), bla(VIM), bla(KPC), and bla(NDM) genes. The bla(OXA-48), among other genes, was successfully transferred to a previously susceptible bacteria, making it resistant. The study concluded that the rate of carbapenem resistance among Gram-negative bacteria causing UTIs in Cairo, Egypt is relatively high and can be transferred among bacterial hosts. ABSTRACT: Gram-negative bacteria are common causes of urinary tract infections (UTIs). Such pathogens can acquire genes encoding multiple mechanisms of antimicrobial resistance, including carbapenem resistance. The aim of this study was to detect the carbapenemase-producing ability of some Gram-negative bacterial isolates from urine specimens of patients suffering from complicated UTIs at two vital tertiary care hospitals in Cairo, Egypt; to determine the prevalence of carbapenemase genes among plasmid-bearing isolates; and explore the possibility of horizontal gene transfer to other bacterial species. The collected isolates were subjected to antimicrobial susceptibility testing, phenotypic analysis of carbapenemase production, and molecular detection of plasmid-borne carbapenemase genes, then the extracted plasmids were transformed into competent E. coli DH5α. A total of 256 Gram-negative bacterial clinical isolates were collected, 65 (25.4%) isolates showed carbapenem resistance of which 36 (55.4%) were carbapenemase-producers, and of these 31 (47.7%) harbored plasmids. The extracted plasmids were used as templates for PCR amplification of bla(KPC), bla(NDM), bla(VIM), bla(OXA-48,) and bla(IMP) carbapenemase genes. The bla(OXA-48) gene was detected in 24 (77.4%) of the tested isolates while bla(VIM) gene was detected in 8 (25.8%), both bla(KPC) and bla(NDM) genes were co-present in 1 (3.2%) isolate. Plasmids carrying the bla(OXA-48) gene from 4 K. pneumoniae clinical isolates were successfully transformed into competent E. coli DH5α. The transformants were carbapenemase-producers and acquired resistance to some of the tested antimicrobial agents as compared to untransformed E. coli DH5α. The study concluded that the rate of carbapenem resistance among Gram-negative bacterial uropathogens in Cairo, Egypt is relatively high and can be transferred horizontally to other bacterial host(s).
format Online
Article
Text
id pubmed-8469419
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-84694192021-09-27 OXA-48 Carbapenemase-Encoding Transferable Plasmids of Klebsiella pneumoniae Recovered from Egyptian Patients Suffering from Complicated Urinary Tract Infections Elshamy, Ann A. Saleh, Sarra E. Alshahrani, Mohammad Y. Aboshanab, Khaled M. Aboulwafa, Mohammad M. Hassouna, Nadia A. Biology (Basel) Article SIMPLE SUMMARY: Gram-negative bacteria are common causes of urinary tract infections (UTIs), some of which can resist treatment by antibiotics, including carbapenems, which are last resort treatment options. This study aimed to report the resistance of some Gram-negative bacteria causing complicated UTIs to carbapenems at two important hospitals in Cairo, Egypt, and to determine the possible transfer of this resistance to other bacterial species. The collected bacteria were tested for antibiotic resistance and detection of the genes responsible for this resistance. A total of 256 Gram-negative bacterial clinical isolates were collected, 65 (25.4%) of which showed carbapenem resistance. The detected carbapenem resistance genes were bla(OXA-48), bla(VIM), bla(KPC), and bla(NDM) genes. The bla(OXA-48), among other genes, was successfully transferred to a previously susceptible bacteria, making it resistant. The study concluded that the rate of carbapenem resistance among Gram-negative bacteria causing UTIs in Cairo, Egypt is relatively high and can be transferred among bacterial hosts. ABSTRACT: Gram-negative bacteria are common causes of urinary tract infections (UTIs). Such pathogens can acquire genes encoding multiple mechanisms of antimicrobial resistance, including carbapenem resistance. The aim of this study was to detect the carbapenemase-producing ability of some Gram-negative bacterial isolates from urine specimens of patients suffering from complicated UTIs at two vital tertiary care hospitals in Cairo, Egypt; to determine the prevalence of carbapenemase genes among plasmid-bearing isolates; and explore the possibility of horizontal gene transfer to other bacterial species. The collected isolates were subjected to antimicrobial susceptibility testing, phenotypic analysis of carbapenemase production, and molecular detection of plasmid-borne carbapenemase genes, then the extracted plasmids were transformed into competent E. coli DH5α. A total of 256 Gram-negative bacterial clinical isolates were collected, 65 (25.4%) isolates showed carbapenem resistance of which 36 (55.4%) were carbapenemase-producers, and of these 31 (47.7%) harbored plasmids. The extracted plasmids were used as templates for PCR amplification of bla(KPC), bla(NDM), bla(VIM), bla(OXA-48,) and bla(IMP) carbapenemase genes. The bla(OXA-48) gene was detected in 24 (77.4%) of the tested isolates while bla(VIM) gene was detected in 8 (25.8%), both bla(KPC) and bla(NDM) genes were co-present in 1 (3.2%) isolate. Plasmids carrying the bla(OXA-48) gene from 4 K. pneumoniae clinical isolates were successfully transformed into competent E. coli DH5α. The transformants were carbapenemase-producers and acquired resistance to some of the tested antimicrobial agents as compared to untransformed E. coli DH5α. The study concluded that the rate of carbapenem resistance among Gram-negative bacterial uropathogens in Cairo, Egypt is relatively high and can be transferred horizontally to other bacterial host(s). MDPI 2021-09-09 /pmc/articles/PMC8469419/ /pubmed/34571766 http://dx.doi.org/10.3390/biology10090889 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Elshamy, Ann A.
Saleh, Sarra E.
Alshahrani, Mohammad Y.
Aboshanab, Khaled M.
Aboulwafa, Mohammad M.
Hassouna, Nadia A.
OXA-48 Carbapenemase-Encoding Transferable Plasmids of Klebsiella pneumoniae Recovered from Egyptian Patients Suffering from Complicated Urinary Tract Infections
title OXA-48 Carbapenemase-Encoding Transferable Plasmids of Klebsiella pneumoniae Recovered from Egyptian Patients Suffering from Complicated Urinary Tract Infections
title_full OXA-48 Carbapenemase-Encoding Transferable Plasmids of Klebsiella pneumoniae Recovered from Egyptian Patients Suffering from Complicated Urinary Tract Infections
title_fullStr OXA-48 Carbapenemase-Encoding Transferable Plasmids of Klebsiella pneumoniae Recovered from Egyptian Patients Suffering from Complicated Urinary Tract Infections
title_full_unstemmed OXA-48 Carbapenemase-Encoding Transferable Plasmids of Klebsiella pneumoniae Recovered from Egyptian Patients Suffering from Complicated Urinary Tract Infections
title_short OXA-48 Carbapenemase-Encoding Transferable Plasmids of Klebsiella pneumoniae Recovered from Egyptian Patients Suffering from Complicated Urinary Tract Infections
title_sort oxa-48 carbapenemase-encoding transferable plasmids of klebsiella pneumoniae recovered from egyptian patients suffering from complicated urinary tract infections
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469419/
https://www.ncbi.nlm.nih.gov/pubmed/34571766
http://dx.doi.org/10.3390/biology10090889
work_keys_str_mv AT elshamyanna oxa48carbapenemaseencodingtransferableplasmidsofklebsiellapneumoniaerecoveredfromegyptianpatientssufferingfromcomplicatedurinarytractinfections
AT salehsarrae oxa48carbapenemaseencodingtransferableplasmidsofklebsiellapneumoniaerecoveredfromegyptianpatientssufferingfromcomplicatedurinarytractinfections
AT alshahranimohammady oxa48carbapenemaseencodingtransferableplasmidsofklebsiellapneumoniaerecoveredfromegyptianpatientssufferingfromcomplicatedurinarytractinfections
AT aboshanabkhaledm oxa48carbapenemaseencodingtransferableplasmidsofklebsiellapneumoniaerecoveredfromegyptianpatientssufferingfromcomplicatedurinarytractinfections
AT aboulwafamohammadm oxa48carbapenemaseencodingtransferableplasmidsofklebsiellapneumoniaerecoveredfromegyptianpatientssufferingfromcomplicatedurinarytractinfections
AT hassounanadiaa oxa48carbapenemaseencodingtransferableplasmidsofklebsiellapneumoniaerecoveredfromegyptianpatientssufferingfromcomplicatedurinarytractinfections