Cargando…
Wettability Changes Due to Nanomaterials and Alkali—A Proposed Formulation for EOR
We investigated the usage of two silica nanomaterials (surface-modified) and alkali in enhanced oil recovery through Amott spontaneous imbibition tests, interfacial tension (IFT) measurements, and phase behavior. We evaluated the wettability alteration induced by the synergy between nanomaterials an...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469516/ https://www.ncbi.nlm.nih.gov/pubmed/34578671 http://dx.doi.org/10.3390/nano11092351 |
_version_ | 1784573951968542720 |
---|---|
author | Saleh, Samhar Neubauer, Elisabeth Borovina, Ante Hincapie, Rafael E. Clemens, Torsten Ness, Daniel |
author_facet | Saleh, Samhar Neubauer, Elisabeth Borovina, Ante Hincapie, Rafael E. Clemens, Torsten Ness, Daniel |
author_sort | Saleh, Samhar |
collection | PubMed |
description | We investigated the usage of two silica nanomaterials (surface-modified) and alkali in enhanced oil recovery through Amott spontaneous imbibition tests, interfacial tension (IFT) measurements, and phase behavior. We evaluated the wettability alteration induced by the synergy between nanomaterials and alkali. Moreover, numerical analysis of the results was carried out using inverse Bond number and capillary diffusion coefficient. Evaluations included the use of Berea and Keuper outcrop material, crude oil with different total acid numbers (TAN), and Na(2)CO(3) as alkaline agent. Data showed that nanomaterials can reduce the IFT, with surface charge playing an important role in this process. In synergy with alkali, the use of nanomaterials led to low-stable IFT values. This effect was also seen in the phase behavior tests, where brine/oil systems with lower IFT exhibited better emulsification. Nanomaterials’ contribution to the phase behavior was mainly the stabilization of the emulsion middle phase. The influence of TAN number on the IFT and phase behavior was prominent especially when combined with alkali. Amott spontaneous imbibition resulted in additional oil recovery ranging from 4% to 50% above the baseline, which was confirmed by inverse Bond number analysis. High recoveries were achieved using alkali and nanomaterials; these values were attributed to wettability alteration that accelerated the imbibition kinetics as seen in capillary diffusion coefficient analysis. |
format | Online Article Text |
id | pubmed-8469516 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84695162021-09-27 Wettability Changes Due to Nanomaterials and Alkali—A Proposed Formulation for EOR Saleh, Samhar Neubauer, Elisabeth Borovina, Ante Hincapie, Rafael E. Clemens, Torsten Ness, Daniel Nanomaterials (Basel) Article We investigated the usage of two silica nanomaterials (surface-modified) and alkali in enhanced oil recovery through Amott spontaneous imbibition tests, interfacial tension (IFT) measurements, and phase behavior. We evaluated the wettability alteration induced by the synergy between nanomaterials and alkali. Moreover, numerical analysis of the results was carried out using inverse Bond number and capillary diffusion coefficient. Evaluations included the use of Berea and Keuper outcrop material, crude oil with different total acid numbers (TAN), and Na(2)CO(3) as alkaline agent. Data showed that nanomaterials can reduce the IFT, with surface charge playing an important role in this process. In synergy with alkali, the use of nanomaterials led to low-stable IFT values. This effect was also seen in the phase behavior tests, where brine/oil systems with lower IFT exhibited better emulsification. Nanomaterials’ contribution to the phase behavior was mainly the stabilization of the emulsion middle phase. The influence of TAN number on the IFT and phase behavior was prominent especially when combined with alkali. Amott spontaneous imbibition resulted in additional oil recovery ranging from 4% to 50% above the baseline, which was confirmed by inverse Bond number analysis. High recoveries were achieved using alkali and nanomaterials; these values were attributed to wettability alteration that accelerated the imbibition kinetics as seen in capillary diffusion coefficient analysis. MDPI 2021-09-10 /pmc/articles/PMC8469516/ /pubmed/34578671 http://dx.doi.org/10.3390/nano11092351 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Saleh, Samhar Neubauer, Elisabeth Borovina, Ante Hincapie, Rafael E. Clemens, Torsten Ness, Daniel Wettability Changes Due to Nanomaterials and Alkali—A Proposed Formulation for EOR |
title | Wettability Changes Due to Nanomaterials and Alkali—A Proposed Formulation for EOR |
title_full | Wettability Changes Due to Nanomaterials and Alkali—A Proposed Formulation for EOR |
title_fullStr | Wettability Changes Due to Nanomaterials and Alkali—A Proposed Formulation for EOR |
title_full_unstemmed | Wettability Changes Due to Nanomaterials and Alkali—A Proposed Formulation for EOR |
title_short | Wettability Changes Due to Nanomaterials and Alkali—A Proposed Formulation for EOR |
title_sort | wettability changes due to nanomaterials and alkali—a proposed formulation for eor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469516/ https://www.ncbi.nlm.nih.gov/pubmed/34578671 http://dx.doi.org/10.3390/nano11092351 |
work_keys_str_mv | AT salehsamhar wettabilitychangesduetonanomaterialsandalkaliaproposedformulationforeor AT neubauerelisabeth wettabilitychangesduetonanomaterialsandalkaliaproposedformulationforeor AT borovinaante wettabilitychangesduetonanomaterialsandalkaliaproposedformulationforeor AT hincapierafaele wettabilitychangesduetonanomaterialsandalkaliaproposedformulationforeor AT clemenstorsten wettabilitychangesduetonanomaterialsandalkaliaproposedformulationforeor AT nessdaniel wettabilitychangesduetonanomaterialsandalkaliaproposedformulationforeor |