Cargando…
Years of Schooling Could Reduce Epigenetic Aging: A Study of a Mexican Cohort
Adverse conditions in early life, including environmental, biological and social influences, are risk factors for ill-health during aging and the onset of age-related disorders. In this context, the recent field of social epigenetics offers a valuable method for establishing the relationships among...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469534/ https://www.ncbi.nlm.nih.gov/pubmed/34573390 http://dx.doi.org/10.3390/genes12091408 |
Sumario: | Adverse conditions in early life, including environmental, biological and social influences, are risk factors for ill-health during aging and the onset of age-related disorders. In this context, the recent field of social epigenetics offers a valuable method for establishing the relationships among them However, current clinical studies on environmental changes and lifespan disorders are limited. In this sense, the Tlaltizapan (Mexico) cohort, who 52 years ago was exposed to infant malnutrition, low income and poor hygiene conditions, represents a vital source for exploring such factors. Therefore, in the present study, 52 years later, we aimed to explore differences in clinical/biochemical/anthropometric and epigenetic (DNA methylation) variables between individuals from such a cohort, in comparison with an urban-raised sample. Interestingly, only cholesterol levels showed significant differences between the cohorts. On the other hand, individuals from the Tlaltizapan cohort with more years of schooling had a lower epigenetic age in the Horvath (p-value = 0.0225) and PhenoAge (p-value = 0.0353) clocks, compared to those with lower-level schooling. Our analysis indicates 12 differentially methylated sites associated with the PI3-Akt signaling pathway and galactose metabolism in individuals with different durations of schooling. In conclusion, our results suggest that longer durations of schooling could promote DNA methylation changes that may reduce epigenetic age; nevertheless, further studies are needed. |
---|