Cargando…
Learning from Scarce Information: Using Synthetic Data to Classify Roman Fine Ware Pottery
In this article, we consider a version of the challenging problem of learning from datasets whose size is too limited to allow generalisation beyond the training set. To address the challenge, we propose to use a transfer learning approach whereby the model is first trained on a synthetic dataset re...
Autores principales: | Núñez Jareño, Santos J., van Helden, Daniël P., Mirkes, Evgeny M., Tyukin, Ivan Y., Allison, Penelope M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469565/ https://www.ncbi.nlm.nih.gov/pubmed/34573765 http://dx.doi.org/10.3390/e23091140 |
Ejemplares similares
-
Late Pleistocene pottery production and exchange: Provenance studies of hunter-gatherer wares from southern Kyushu, Japan by neutron activation analysis
por: Iizuka, Fumie, et al.
Publicado: (2022) -
Scikit-Dimension: A Python Package for Intrinsic Dimension Estimation
por: Bac, Jonathan, et al.
Publicado: (2021) -
PotteryVR: virtual reality pottery
por: Dashti, Sarah, et al.
Publicado: (2022) -
Novell IntranetWare/NetWare 5
por: Zacker, Craig
Publicado: (1999) -
High-Dimensional Separability for One- and Few-Shot Learning
por: Gorban, Alexander N., et al.
Publicado: (2021)