Cargando…

Numerical and Experimental Validation of Mixing Efficiency in Periodic Disturbance Mixers

The shape and dimensions of a micromixer are key elements in the mixing process. Accurately quantifying the mixing efficiency enables the evaluation of the performance of a micromixer and the selection of the most suitable one for specific applications. In this paper, two methods are investigated to...

Descripción completa

Detalles Bibliográficos
Autores principales: López, Rubén R., Sánchez, Luz-María, Alazzam, Anas, Burnier, Julia V., Stiharu, Ion, Nerguizian, Vahé
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469598/
https://www.ncbi.nlm.nih.gov/pubmed/34577745
http://dx.doi.org/10.3390/mi12091102
Descripción
Sumario:The shape and dimensions of a micromixer are key elements in the mixing process. Accurately quantifying the mixing efficiency enables the evaluation of the performance of a micromixer and the selection of the most suitable one for specific applications. In this paper, two methods are investigated to evaluate the mixing efficiency: a numerical model and an experimental model with a software image processing technique. Using two methods to calculate the mixing efficiency, in addition to corroborating the results and increasing their reliability, creates various possible approaches that can be selected depending on the circumstances, resources, amount of data to be processed and processing time. Image processing is an easy-to-implement tool, is applicable to different programming languages, is flexible, and provides a quick response that allows the calculation of the mixing efficiency using a process of filtering of images and quantifying the intensity of the color, which is associated with the percentage of mixing. The results showed high similarity between the two methods, with a difference ranging between 0 and 6% in all the evaluated points.