Cargando…
NF-κB and Pancreatic Cancer; Chapter and Verse
SIMPLE SUMMARY: The incidence of pancreatic cancer is increasing but there has been little progress in the diagnosis and survival rates of this lethal cancer for decades. Understanding the biological mechanisms and defining how pancreatic cancer develops from normal pancreas tissue, to early lesions...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469693/ https://www.ncbi.nlm.nih.gov/pubmed/34572737 http://dx.doi.org/10.3390/cancers13184510 |
_version_ | 1784574001275731968 |
---|---|
author | Silke, John O’Reilly, Lorraine Ann |
author_facet | Silke, John O’Reilly, Lorraine Ann |
author_sort | Silke, John |
collection | PubMed |
description | SIMPLE SUMMARY: The incidence of pancreatic cancer is increasing but there has been little progress in the diagnosis and survival rates of this lethal cancer for decades. Understanding the biological mechanisms and defining how pancreatic cancer develops from normal pancreas tissue, to early lesions and then tumor is vital in developing better treatment options. Unrelenting inflammation in the pancreas significantly increases the risk of developing precursor lesions which result in pancreatic cancer. This inflammatory environment can result in the “switching on” of signaling pathways in the pancreas that influences many factors such as cell survival and turnover involved in tumor initiation, development and spread. In this review we discuss in detail how components of one such pathway, the NF-κB signaling network, are involved at various stages of pancreatic cancer development and in the cellular milieu of this cancer. We also discuss how this signaling pathway could be potentially “switched off” or regulated using new inhibitors and how these agents may be coupled with conventional and/or other therapies for better patient treatment outcomes. ABSTRACT: Pancreatic Ductal Adenocarcinoma (PDAC) is one of the world’s most lethal cancers. An increase in occurrence, coupled with, presently limited treatment options, necessitates the pursuit of new therapeutic approaches. Many human cancers, including PDAC are initiated by unresolved inflammation. The transcription factor NF-κB coordinates many signals that drive cellular activation and proliferation during immunity but also those involved in inflammation and autophagy which may instigate tumorigenesis. It is not surprising therefore, that activation of canonical and non-canonical NF-κB pathways is increasingly recognized as an important driver of pancreatic injury, progression to tumorigenesis and drug resistance. Paradoxically, NF-κB dysregulation has also been shown to inhibit pancreatic inflammation and pancreatic cancer, depending on the context. A pro-oncogenic or pro-suppressive role for individual components of the NF-κB pathway appears to be cell type, microenvironment and even stage dependent. This review provides an outline of NF-κB signaling, focusing on the role of the various NF-κB family members in the evolving inflammatory PDAC microenvironment. Finally, we discuss pharmacological control of NF-κB to curb inflammation, focussing on novel anti-cancer agents which reinstate the process of cancer cell death, the Smac mimetics and their pre-clinical and early clinical trials. |
format | Online Article Text |
id | pubmed-8469693 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84696932021-09-27 NF-κB and Pancreatic Cancer; Chapter and Verse Silke, John O’Reilly, Lorraine Ann Cancers (Basel) Review SIMPLE SUMMARY: The incidence of pancreatic cancer is increasing but there has been little progress in the diagnosis and survival rates of this lethal cancer for decades. Understanding the biological mechanisms and defining how pancreatic cancer develops from normal pancreas tissue, to early lesions and then tumor is vital in developing better treatment options. Unrelenting inflammation in the pancreas significantly increases the risk of developing precursor lesions which result in pancreatic cancer. This inflammatory environment can result in the “switching on” of signaling pathways in the pancreas that influences many factors such as cell survival and turnover involved in tumor initiation, development and spread. In this review we discuss in detail how components of one such pathway, the NF-κB signaling network, are involved at various stages of pancreatic cancer development and in the cellular milieu of this cancer. We also discuss how this signaling pathway could be potentially “switched off” or regulated using new inhibitors and how these agents may be coupled with conventional and/or other therapies for better patient treatment outcomes. ABSTRACT: Pancreatic Ductal Adenocarcinoma (PDAC) is one of the world’s most lethal cancers. An increase in occurrence, coupled with, presently limited treatment options, necessitates the pursuit of new therapeutic approaches. Many human cancers, including PDAC are initiated by unresolved inflammation. The transcription factor NF-κB coordinates many signals that drive cellular activation and proliferation during immunity but also those involved in inflammation and autophagy which may instigate tumorigenesis. It is not surprising therefore, that activation of canonical and non-canonical NF-κB pathways is increasingly recognized as an important driver of pancreatic injury, progression to tumorigenesis and drug resistance. Paradoxically, NF-κB dysregulation has also been shown to inhibit pancreatic inflammation and pancreatic cancer, depending on the context. A pro-oncogenic or pro-suppressive role for individual components of the NF-κB pathway appears to be cell type, microenvironment and even stage dependent. This review provides an outline of NF-κB signaling, focusing on the role of the various NF-κB family members in the evolving inflammatory PDAC microenvironment. Finally, we discuss pharmacological control of NF-κB to curb inflammation, focussing on novel anti-cancer agents which reinstate the process of cancer cell death, the Smac mimetics and their pre-clinical and early clinical trials. MDPI 2021-09-07 /pmc/articles/PMC8469693/ /pubmed/34572737 http://dx.doi.org/10.3390/cancers13184510 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Silke, John O’Reilly, Lorraine Ann NF-κB and Pancreatic Cancer; Chapter and Verse |
title | NF-κB and Pancreatic Cancer; Chapter and Verse |
title_full | NF-κB and Pancreatic Cancer; Chapter and Verse |
title_fullStr | NF-κB and Pancreatic Cancer; Chapter and Verse |
title_full_unstemmed | NF-κB and Pancreatic Cancer; Chapter and Verse |
title_short | NF-κB and Pancreatic Cancer; Chapter and Verse |
title_sort | nf-κb and pancreatic cancer; chapter and verse |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469693/ https://www.ncbi.nlm.nih.gov/pubmed/34572737 http://dx.doi.org/10.3390/cancers13184510 |
work_keys_str_mv | AT silkejohn nfkbandpancreaticcancerchapterandverse AT oreillylorraineann nfkbandpancreaticcancerchapterandverse |