Cargando…

Nano-Hydroxyapatite vs. Xenografts: Synthesis, Characterization, and In Vitro Behavior

This research focused on the synthesis of apatite, starting from a natural biogenic calcium source (egg-shells) and its chemical and morpho-structural characterization in comparison with two commercial xenografts used as a bone substitute in dentistry. The synthesis route for the hydroxyapatite powd...

Descripción completa

Detalles Bibliográficos
Autores principales: Dumitrescu, Cristina Rodica, Neacsu, Ionela Andreea, Surdu, Vasile Adrian, Nicoara, Adrian Ionut, Iordache, Florin, Trusca, Roxana, Ciocan, Lucian Toma, Ficai, Anton, Andronescu, Ecaterina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469747/
https://www.ncbi.nlm.nih.gov/pubmed/34578603
http://dx.doi.org/10.3390/nano11092289
Descripción
Sumario:This research focused on the synthesis of apatite, starting from a natural biogenic calcium source (egg-shells) and its chemical and morpho-structural characterization in comparison with two commercial xenografts used as a bone substitute in dentistry. The synthesis route for the hydroxyapatite powder was the microwave-assisted hydrothermal technique, starting from annealed egg-shells as the precursor for lime and di-base ammonium phosphate as the phosphate precursor. The powders were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM), X-ray fluorescence spectroscopy (XRF), and cytotoxicity assay in contact with amniotic fluid stem cell (AFSC) cultures. Compositional and structural similarities or differences between the powder synthesized from egg-shells (HA1) and the two commercial xenograft powders—Bio-Oss(®), totally deproteinized cortical bovine bone, and Gen-Os(®), partially deproteinized porcine bone—were revealed. The HA1 specimen presented a single mineral phase as polycrystalline apatite with a high crystallinity (X(c) 0.92), a crystallite size of 43.73 nm, preferential growth under the c axes (002) direction, where it mineralizes in bone, a nano-rod particle morphology, and average lengths up to 77.29 nm and diameters up to 21.74 nm. The surface of the HA1 nanoparticles and internal mesopores (mean size of 3.3 ± 1.6 nm), acquired from high-pressure hydrothermal maturation, along with the precursor’s nature, could be responsible for the improved biocompatibility, biomolecule adhesion, and osteoconductive abilities in bone substitute applications. The cytotoxicity assay showed a better AFSC cell viability for HA1 powder than the commercial xenografts did, similar oxidative stress to the control sample, and improved results compared with Gen-Os. The presented preliminary biocompatibility results are promising for bone tissue regeneration applications of HA1, and the study will continue with further tests on osteoblast differentiation and mineralization.