Cargando…
On Selection Criteria for the Tuning Parameter in Robust Divergence
Although robust divergence, such as density power divergence and [Formula: see text]-divergence, is helpful for robust statistical inference in the presence of outliers, the tuning parameter that controls the degree of robustness is chosen in a rule-of-thumb, which may lead to an inefficient inferen...
Autores principales: | Sugasawa, Shonosuke, Yonekura, Shouto |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469821/ https://www.ncbi.nlm.nih.gov/pubmed/34573772 http://dx.doi.org/10.3390/e23091147 |
Ejemplares similares
-
Robust Bayesian Regression with Synthetic Posterior Distributions
por: Hashimoto, Shintaro, et al.
Publicado: (2020) -
Robust Model Selection Criteria Based on Pseudodistances
por: Toma, Aida, et al.
Publicado: (2020) -
Tuning parameter selection for a penalized estimator of species richness
por: Paynter, Alex, et al.
Publicado: (2020) -
Robustness in data analysis: criteria and methods
por: Shevlyakov, Georgy L, et al.
Publicado: (2011) -
PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore
por: Chowdhury, Ratul, et al.
Publicado: (2018)