Cargando…
Deep Learning for Caries Detection and Classification
Objectives: Deep learning methods have achieved impressive diagnostic performance in the field of radiology. The current study aimed to use deep learning methods to detect caries lesions, classify different radiographic extensions on panoramic films, and compare the classification results with those...
Autores principales: | Lian, Luya, Zhu, Tianer, Zhu, Fudong, Zhu, Haihua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469830/ https://www.ncbi.nlm.nih.gov/pubmed/34574013 http://dx.doi.org/10.3390/diagnostics11091672 |
Ejemplares similares
-
CariesNet: a deep learning approach for segmentation of multi-stage caries lesion from oral panoramic X-ray image
por: Zhu, Haihua, et al.
Publicado: (2022) -
Artificial Intelligence Model to Detect Real Contact Relationship between Mandibular Third Molars and Inferior Alveolar Nerve Based on Panoramic Radiographs
por: Zhu, Tianer, et al.
Publicado: (2021) -
Related Risk Factors of Early Childhood Caries in Zhejiang Province, China During the COVID-19 Pandemic
por: Huang, Chaoqiang, et al.
Publicado: (2022) -
The prevalence and common risk indicators of root caries and oral health service utilization pattern among adults, a cross-sectional study
por: Chen, Weixing, et al.
Publicado: (2023) -
Caries prevalence of the first permanent molars in 6–8 years old children
por: Zhu, Fudong, et al.
Publicado: (2021)