Cargando…
Deep Reinforcement Learning with Explicit Spatio-Sequential Encoding Network for Coronary Ostia Identification in CT Images
Accurate identification of the coronary ostia from 3D coronary computed tomography angiography (CCTA) is a essential prerequisite step for automatically tracking and segmenting three main coronary arteries. In this paper, we propose a novel deep reinforcement learning (DRL) framework to localize the...
Autores principales: | Jang, Yeonggul, Jeon, Byunghwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469841/ https://www.ncbi.nlm.nih.gov/pubmed/34577391 http://dx.doi.org/10.3390/s21186187 |
Ejemplares similares
-
Automatic Coronary Artery Segmentation Using Active Search for Branches and Seemingly Disconnected Vessel Segments from Coronary CT Angiography
por: Han, Dongjin, et al.
Publicado: (2016) -
Deep Recursive Bayesian Tracking for Fully Automatic Centerline Extraction of Coronary Arteries in CT Images
por: Jeon, Byunghwan
Publicado: (2021) -
Morphometry and topography of the coronary ostia in the dog
por: Barszcz, Karolina, et al.
Publicado: (2023) -
Morphometry of the coronary ostia and the structure of coronary arteries in the shorthair domestic cat
por: Barszcz, Karolina, et al.
Publicado: (2017) -
Coronary ostia obstruction after replacement of aortic valve prostesis
por: Turillazzi, Emanuela, et al.
Publicado: (2011)