Cargando…
A Hybrid SVD-Based Denoising and Self-Adaptive TMSST for High-Speed Train Axle Bearing Fault Detection
Fault detection of axle bearings is crucial to promote the safe, efficient, and reliable running of high-speed trains. In recent decades, time−frequency analysis (TFA) techniques have been widely used in mechanical equipment fault diagnoses. Time-reassigned multisynchrosqueezing transform (TMSST), a...
Autores principales: | Deng, Feiyue, Liu, Chao, Liu, Yongqiang, Hao, Rujiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8469842/ https://www.ncbi.nlm.nih.gov/pubmed/34577232 http://dx.doi.org/10.3390/s21186025 |
Ejemplares similares
-
Utilizing SVD and VMD for Denoising Non-Stationary Signals of Roller Bearings
por: Wang, Qinghua, et al.
Publicado: (2021) -
Adaptive VMD–K-SVD-Based Rolling Bearing Fault Signal Enhancement Study
por: Mao, Meijiao, et al.
Publicado: (2023) -
Chaotic signal denoising based on energy selection TQWT and adaptive SVD
por: Yang, Xinlu, et al.
Publicado: (2023) -
A Real-Time Fault Early Warning Method for a High-Speed EMU Axle Box Bearing
por: Liu, Lei, et al.
Publicado: (2020) -
Fault Diagnosis for High-Speed Train Axle-Box Bearing Using Simplified Shallow Information Fusion Convolutional Neural Network
por: Luo, Honglin, et al.
Publicado: (2020)