Cargando…
Significance Support Vector Regression for Image Denoising
As an extension of the support vector machine, support vector regression (SVR) plays a significant role in image denoising. However, due to ignoring the spatial distribution information of noisy pixels, the conventional SVR denoising model faces the bottleneck of overfitting in the case of serious n...
Autores principales: | Sun, Bing, Liu, Xiaofeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470107/ https://www.ncbi.nlm.nih.gov/pubmed/34573858 http://dx.doi.org/10.3390/e23091233 |
Ejemplares similares
-
SVR-EEMD: An Improved EEMD Method Based on Support Vector Regression Extension in PPG Signal Denoising
por: Liu, Guangda, et al.
Publicado: (2019) -
Adversarial Gaussian Denoiser for Multiple-Level Image Denoising
por: Khan, Aamir, et al.
Publicado: (2021) -
Deflectometry and image denoising
por: Komander, Birgit
Publicado: (2019) -
Multicomponent MR Image Denoising
por: Manjón, José V., et al.
Publicado: (2009) -
Distributed Support Vector Ordinal Regression over Networks
por: Liu, Huan, et al.
Publicado: (2022)