Cargando…
3D Printed Microfluidic Spiral Separation Device for Continuous, Pulsation-Free and Controllable CHO Cell Retention
The development of continuous bioprocesses—which require cell retention systems in order to enable longer cultivation durations—is a primary focus in the field of modern process development. The flow environment of microfluidic systems enables the granular manipulation of particles (to allow for gre...
Autores principales: | Enders, Anton, Preuss, John-Alexander, Bahnemann, Janina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470376/ https://www.ncbi.nlm.nih.gov/pubmed/34577708 http://dx.doi.org/10.3390/mi12091060 |
Ejemplares similares
-
Establishment of a Perfusion Process with Antibody-Producing CHO Cells Using a 3D-Printed Microfluidic Spiral Separator with Web-Based Flow Control
por: Schellenberg, Jana, et al.
Publicado: (2023) -
3D printed microfluidic lab-on-a-chip device for fiber-based dual beam optical manipulation
por: Wang, Haoran, et al.
Publicado: (2021) -
3D printing in biotechnology—An insight into miniaturized and microfluidic systems for applications from cell culture to bioanalytics
por: Heuer, Christopher, et al.
Publicado: (2021) -
3D-printed microfluidics integrated with optical nanostructured porous aptasensors for protein detection
por: Arshavsky-Graham, Sofia, et al.
Publicado: (2021) -
Continuous separation of bacterial cells from large debris using a spiral microfluidic device
por: Esan, Ayomikun, et al.
Publicado: (2023)