Cargando…
Identifying Hybrid DDoS Attacks in Deterministic Machine-to-Machine Networks on a Per-Deterministic-Flow Basis
The Deterministic Network (DetNet) is becoming a major feature for 5G and 6G networks to cope with the issue that conventional IT infrastructure cannot efficiently handle latency-sensitive data. The DetNet applies flow virtualization to satisfy time-critical flow requirements, but inevitably, DetNet...
Autores principales: | Chen, Yen-Hung, Lai, Yuan-Cheng, Zhou, Kai-Zhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470598/ https://www.ncbi.nlm.nih.gov/pubmed/34577663 http://dx.doi.org/10.3390/mi12091019 |
Ejemplares similares
-
A hybrid machine learning approach for detecting unprecedented DDoS attacks
por: Najafimehr, Mohammad, et al.
Publicado: (2022) -
KS-DDoS: Kafka streams-based classification approach for DDoS attacks
por: Patil, Nilesh Vishwasrao, et al.
Publicado: (2022) -
SSK-DDoS: distributed stream processing framework based classification system for DDoS attacks
por: Patil, Nilesh Vishwasrao, et al.
Publicado: (2022) -
DDoS attacks hit hard and fast
Publicado: (2020) -
VMFCVD: An Optimized Framework to Combat Volumetric DDoS Attacks using Machine Learning
por: Prasad, Arvind, et al.
Publicado: (2022)