Cargando…
Deep Features for Training Support Vector Machines
Features play a crucial role in computer vision. Initially designed to detect salient elements by means of handcrafted algorithms, features now are often learned using different layers in convolutional neural networks (CNNs). This paper develops a generic computer vision system based on features ext...
Autores principales: | Nanni, Loris, Ghidoni, Stefano, Brahnam, Sheryl |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470768/ https://www.ncbi.nlm.nih.gov/pubmed/34564103 http://dx.doi.org/10.3390/jimaging7090177 |
Ejemplares similares
-
Comparison of Different Convolutional Neural Network Activation Functions and Methods for Building Ensembles for Small to Midsize Medical Data Sets
por: Nanni, Loris, et al.
Publicado: (2022) -
Toward a General-Purpose Heterogeneous Ensemble for Pattern Classification
por: Nanni, Loris, et al.
Publicado: (2015) -
Different Approaches for Extracting Information from the Co-Occurrence Matrix
por: Nanni, Loris, et al.
Publicado: (2013) -
Face Detection Ensemble with Methods Using Depth Information to Filter False Positives
por: Nanni, Loris, et al.
Publicado: (2019) -
An Empirical Study of Different Approaches for Protein Classification
por: Nanni, Loris, et al.
Publicado: (2014)