Cargando…

Non-Target Site Mechanisms Endow Resistance to Glyphosate in Saltmarsh Aster (Aster squamatus)

Of the six-glyphosate resistant weed species reported in Mexico, five were found in citrus groves. Here, the glyphosate susceptibility level and resistance mechanisms were evaluated in saltmarsh aster (Aster squamatus), a weed that also occurs in Mexican citrus groves. The R population accumulated 4...

Descripción completa

Detalles Bibliográficos
Autores principales: Domínguez-Valenzuela, José Alfredo, Alcántara-de la Cruz, Ricardo, Palma-Bautista, Candelario, Vázquez-García, José Guadalupe, Cruz-Hipolito, Hugo E., De Prado, Rafael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470777/
https://www.ncbi.nlm.nih.gov/pubmed/34579501
http://dx.doi.org/10.3390/plants10091970
Descripción
Sumario:Of the six-glyphosate resistant weed species reported in Mexico, five were found in citrus groves. Here, the glyphosate susceptibility level and resistance mechanisms were evaluated in saltmarsh aster (Aster squamatus), a weed that also occurs in Mexican citrus groves. The R population accumulated 4.5-fold less shikimic acid than S population. S plants hardly survived at 125 g ae ha(−1) while most of the R plants that were treated with 1000 g ae ha(−1), which suffered a strong growth arrest, showed a vigorous regrowth from the third week after treatment. Further, 5-enolpyruvylshikimate-3-phosphate basal and enzymatic activities did not diverge between populations, suggesting the absence of target-site resistance mechanisms. At 96 h after treatment, R plants absorbed ~18% less glyphosate and maintained 63% of the (14)C-glyphsoate absorbed in the treated leaf in comparison to S plants. R plants metabolized twice as much (72%) glyphosate to amino methyl phosphonic acid and glyoxylate as the S plants. Three non-target mechanisms, reduced absorption and translocation and increased metabolism, confer glyphosate resistance saltmarsh aster. This is the first case of glyphosate resistance recorded for A. squamatus in the world.