Cargando…

Multiple Mating of Aphelinus asychis Enhance the Number of Female Progeny but Shorten the Longevity

SIMPLE SUMMARY: Aphelinus asychis Walker is an arrhenotocia endoparasitoid against the devastating vegetable pest Myzus persicae. Unmated Aphelinus asychis females only produce male progeny, and mated female adults produce male and female progeny. Because only female adults can kill the target pest...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Shengyin, Wang, Libo, Liu, Jiawen, Zhang, Dayu, Liu, Tongxian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8470986/
https://www.ncbi.nlm.nih.gov/pubmed/34564263
http://dx.doi.org/10.3390/insects12090823
Descripción
Sumario:SIMPLE SUMMARY: Aphelinus asychis Walker is an arrhenotocia endoparasitoid against the devastating vegetable pest Myzus persicae. Unmated Aphelinus asychis females only produce male progeny, and mated female adults produce male and female progeny. Because only female adults can kill the target pest by parasitism and feeding, the control efficiency of Aphelinus asychis was mainly affected by the percentage of female adults. We found that Aphelinus asychis females could mate multiple times to receive more sperm in their life span, which was beneficial for enhancing the number and percentage of female progeny. In addition, backcrossing is critical for population increase when the proportion of males is low. We also found that there was no significant difference in the population fitness of Aphelinus asychis between backcross and control treatments. ABSTRACT: The Aphelinus asychis female adult is an important arrhenotocous parthenogenesis parasitoid of Myzus persicae, and its reproductive mode is beneficial for the population continuation of A. asychis by way of multiple mating and backcross. To explore the effect of mating on the population fitness and control efficiency of A. asychis, its mating frequency and backcross were observed under laboratory conditions. The results showed that most matings in A. asychis involved four distinct stages: courtship, pre-copulatory, copulation, and post-copulatory behaviours. Only the duration of courtship increased significantly with an increase in copulation frequency for females, and the courtship duration of A. asychis females mated with different males were significantly shorter than those mated with the same male at the same mating times, which suggested that A. asychis females might prefer to mate with different males to enrich the genotype of their offspring. The total number of mummified aphids and the female and male longevity decreased significantly with an increase in mating frequency. On the contrary, female progenies increased significantly with an increase of mating frequency, suggesting that sperm limitation might occur in females when they only mated once. These results imply that females might prefer to receive more sperm by mating multiple times in their life span. In addition, we found that the intrinsic rate of increase (r) of A. asychis of the control group (0.2858 d(−1)) was significantly greater than that in the backcross treatment (0.2687 d(−1)). The finite killing rate (θ) of A. asychis of the control group was similar to that in the backcross treatment, which showed that this treatment had a negligible negative effect on the control efficiency of A. asychis. In conclusion, the results showed that multiple mating increased the number and proportion of A. asychis female progenies but shortened the longevity of female and male adults, while the negative effect of backcross on the control efficiency of A. asychis was negligible.