Cargando…
Brain Tumor Detection and Classification on MR Images by a Deep Wavelet Auto-Encoder Model
The process of diagnosing brain tumors is very complicated for many reasons, including the brain’s synaptic structure, size, and shape. Machine learning techniques are employed to help doctors to detect brain tumor and support their decisions. In recent years, deep learning techniques have made a gr...
Autores principales: | Abd El Kader, Isselmou, Xu, Guizhi, Shuai, Zhang, Saminu, Sani, Javaid, Imran, Ahmad, Isah Salim, Kamhi, Souha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471235/ https://www.ncbi.nlm.nih.gov/pubmed/34573931 http://dx.doi.org/10.3390/diagnostics11091589 |
Ejemplares similares
-
Differential Deep Convolutional Neural Network Model for Brain Tumor Classification
por: Abd El Kader, Isselmou, et al.
Publicado: (2021) -
A Recent Investigation on Detection and Classification of Epileptic Seizure Techniques Using EEG Signal
por: Saminu, Sani, et al.
Publicado: (2021) -
Road-Type Classification with Deep AutoEncoder
por: Molefe, Mohale E., et al.
Publicado: (2023) -
A Novel MRI Diagnosis Method for Brain Tumor Classification Based on CNN and Bayesian Optimization
por: Ait Amou, Mohamed, et al.
Publicado: (2022) -
An Unsupervised Tunnel Damage Identification Method Based on Convolutional Variational Auto-Encoder and Wavelet Packet Analysis
por: Zhang, Yonglai, et al.
Publicado: (2022)