Cargando…

Genomic-Wide Identification and Characterization of the Uridine Diphosphate Glycosyltransferase Family in Eucommia ulmoides Oliver

Eucommia ulmoides Oliver is a woody plant with great economic and medicinal value. Its dried bark has a long history of use as a traditional medicinal material in East Asia, which led to many glycosides, such as aucubin, geniposide, hyperoside, astragalin, and pinoresinol diglucoside, being recogniz...

Descripción completa

Detalles Bibliográficos
Autores principales: Ouyang, Dan, Wang, Lan-Chun, Tang, Ting, Feng, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471388/
https://www.ncbi.nlm.nih.gov/pubmed/34579466
http://dx.doi.org/10.3390/plants10091934
Descripción
Sumario:Eucommia ulmoides Oliver is a woody plant with great economic and medicinal value. Its dried bark has a long history of use as a traditional medicinal material in East Asia, which led to many glycosides, such as aucubin, geniposide, hyperoside, astragalin, and pinoresinol diglucoside, being recognized as pharmacologically active ingredients. Uridine diphosphate glycosyltransferases (UGTs) catalyze a glycosyl-transferring reaction from the donor molecule uridine-5′-diphosphate-glucose (UDPG) to the substrate, which plays an important role in many biological processes, such as plant growth and development, secondary metabolism, and environmental adaptation. In order to explore the biosynthetic pathways of glycosides in E. ulmoides, 91 putative EuUGT genes were identified throughout the complete genome of E. ulmoides through function annotation and an UDPGT domain search. Phylogenetic analysis categorized them into 14 groups. We also performed GO annotations on all the EuUGTs to gain insights into their functions in E. ulmoides. In addition, transcriptomic analysis indicated that most EuUGTs showed different expression patterns across diverse organs and various growing seasons. By protein–protein interaction predication, a biosynthetic routine of flavonoids and their glycosides was also proposed. Undoubtedly, these results will help in future research into the biosynthetic pathways of glycoside compounds in E. ulmoides.