Cargando…
Microgravity Effects on the Matrisome
Gravity is fundamental factor determining all processes of development and vital activity on Earth. During evolution, a complex mechanism of response to gravity alterations was formed in multicellular organisms. It includes the “gravisensors” in extracellular and intracellular spaces. Inside the cel...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471442/ https://www.ncbi.nlm.nih.gov/pubmed/34571874 http://dx.doi.org/10.3390/cells10092226 |
_version_ | 1784574466557214720 |
---|---|
author | Buravkova, Ludmila Larina, Irina Andreeva, Elena Grigoriev, Anatoly |
author_facet | Buravkova, Ludmila Larina, Irina Andreeva, Elena Grigoriev, Anatoly |
author_sort | Buravkova, Ludmila |
collection | PubMed |
description | Gravity is fundamental factor determining all processes of development and vital activity on Earth. During evolution, a complex mechanism of response to gravity alterations was formed in multicellular organisms. It includes the “gravisensors” in extracellular and intracellular spaces. Inside the cells, the cytoskeleton molecules are the principal gravity-sensitive structures, and outside the cells these are extracellular matrix (ECM) components. The cooperation between the intracellular and extracellular compartments is implemented through specialized protein structures, integrins. The gravity-sensitive complex is a kind of molecular hub that coordinates the functions of various tissues and organs in the gravitational environment. The functioning of this system is of particular importance under extremal conditions, such as spaceflight microgravity. This review covers the current understanding of ECM and associated molecules as the matrisome, the features of the above components in connective tissues, and the role of the latter in the cell and tissue responses to the gravity alterations. Special attention is paid to contemporary methodological approaches to the matrisome composition analysis under real space flights and ground-based simulation of its effects on Earth. |
format | Online Article Text |
id | pubmed-8471442 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84714422021-09-28 Microgravity Effects on the Matrisome Buravkova, Ludmila Larina, Irina Andreeva, Elena Grigoriev, Anatoly Cells Review Gravity is fundamental factor determining all processes of development and vital activity on Earth. During evolution, a complex mechanism of response to gravity alterations was formed in multicellular organisms. It includes the “gravisensors” in extracellular and intracellular spaces. Inside the cells, the cytoskeleton molecules are the principal gravity-sensitive structures, and outside the cells these are extracellular matrix (ECM) components. The cooperation between the intracellular and extracellular compartments is implemented through specialized protein structures, integrins. The gravity-sensitive complex is a kind of molecular hub that coordinates the functions of various tissues and organs in the gravitational environment. The functioning of this system is of particular importance under extremal conditions, such as spaceflight microgravity. This review covers the current understanding of ECM and associated molecules as the matrisome, the features of the above components in connective tissues, and the role of the latter in the cell and tissue responses to the gravity alterations. Special attention is paid to contemporary methodological approaches to the matrisome composition analysis under real space flights and ground-based simulation of its effects on Earth. MDPI 2021-08-27 /pmc/articles/PMC8471442/ /pubmed/34571874 http://dx.doi.org/10.3390/cells10092226 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Buravkova, Ludmila Larina, Irina Andreeva, Elena Grigoriev, Anatoly Microgravity Effects on the Matrisome |
title | Microgravity Effects on the Matrisome |
title_full | Microgravity Effects on the Matrisome |
title_fullStr | Microgravity Effects on the Matrisome |
title_full_unstemmed | Microgravity Effects on the Matrisome |
title_short | Microgravity Effects on the Matrisome |
title_sort | microgravity effects on the matrisome |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471442/ https://www.ncbi.nlm.nih.gov/pubmed/34571874 http://dx.doi.org/10.3390/cells10092226 |
work_keys_str_mv | AT buravkovaludmila microgravityeffectsonthematrisome AT larinairina microgravityeffectsonthematrisome AT andreevaelena microgravityeffectsonthematrisome AT grigorievanatoly microgravityeffectsonthematrisome |