Cargando…
Extensions of Granger Causality Calculations on Brain Networks for Efficient and Accurate Seizure Focus Identification via iEEGs
Current epilepsy surgery planning protocol determines the seizure onset zone (SOZ) through resource-intensive, invasive monitoring of ictal events. Recently, we have reported that Granger Causality (GC) maps produced from analysis of interictal iEEG recordings have potential in revealing SOZ. In thi...
Autores principales: | Yang, Victor B., Madsen, Joseph R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471554/ https://www.ncbi.nlm.nih.gov/pubmed/34573188 http://dx.doi.org/10.3390/brainsci11091167 |
Ejemplares similares
-
Granger Causality Analysis of Interictal iEEG Predicts Seizure Focus and Ultimate Resection
por: Park, Eun-Hyoung, et al.
Publicado: (2018) -
A Primer on Hyperdimensional Computing for iEEG Seizure Detection
por: Schindler, Kaspar A., et al.
Publicado: (2021) -
Online Prediction of Lead Seizures from iEEG Data
por: Chen, Hsiang-Han, et al.
Publicado: (2021) -
Expert and deep learning model identification of iEEG seizures and seizure onset times
por: Arcot Desai, Sharanya, et al.
Publicado: (2023) -
A multi-frame network model for predicting seizure based on sEEG and iEEG data
por: Lu, Liangfu, et al.
Publicado: (2022)