Cargando…
Learning in Convolutional Neural Networks Accelerated by Transfer Entropy
Recently, there is a growing interest in applying Transfer Entropy (TE) in quantifying the effective connectivity between artificial neurons. In a feedforward network, the TE can be used to quantify the relationships between neuron output pairs located in different layers. Our focus is on how to inc...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471588/ https://www.ncbi.nlm.nih.gov/pubmed/34573843 http://dx.doi.org/10.3390/e23091218 |
_version_ | 1784574505903980544 |
---|---|
author | Moldovan, Adrian Caţaron, Angel Andonie, Răzvan |
author_facet | Moldovan, Adrian Caţaron, Angel Andonie, Răzvan |
author_sort | Moldovan, Adrian |
collection | PubMed |
description | Recently, there is a growing interest in applying Transfer Entropy (TE) in quantifying the effective connectivity between artificial neurons. In a feedforward network, the TE can be used to quantify the relationships between neuron output pairs located in different layers. Our focus is on how to include the TE in the learning mechanisms of a Convolutional Neural Network (CNN) architecture. We introduce a novel training mechanism for CNN architectures which integrates the TE feedback connections. Adding the TE feedback parameter accelerates the training process, as fewer epochs are needed. On the flip side, it adds computational overhead to each epoch. According to our experiments on CNN classifiers, to achieve a reasonable computational overhead–accuracy trade-off, it is efficient to consider only the inter-neural information transfer of the neuron pairs between the last two fully connected layers. The TE acts as a smoothing factor, generating stability and becoming active only periodically, not after processing each input sample. Therefore, we can consider the TE is in our model a slowly changing meta-parameter. |
format | Online Article Text |
id | pubmed-8471588 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-84715882021-09-28 Learning in Convolutional Neural Networks Accelerated by Transfer Entropy Moldovan, Adrian Caţaron, Angel Andonie, Răzvan Entropy (Basel) Article Recently, there is a growing interest in applying Transfer Entropy (TE) in quantifying the effective connectivity between artificial neurons. In a feedforward network, the TE can be used to quantify the relationships between neuron output pairs located in different layers. Our focus is on how to include the TE in the learning mechanisms of a Convolutional Neural Network (CNN) architecture. We introduce a novel training mechanism for CNN architectures which integrates the TE feedback connections. Adding the TE feedback parameter accelerates the training process, as fewer epochs are needed. On the flip side, it adds computational overhead to each epoch. According to our experiments on CNN classifiers, to achieve a reasonable computational overhead–accuracy trade-off, it is efficient to consider only the inter-neural information transfer of the neuron pairs between the last two fully connected layers. The TE acts as a smoothing factor, generating stability and becoming active only periodically, not after processing each input sample. Therefore, we can consider the TE is in our model a slowly changing meta-parameter. MDPI 2021-09-16 /pmc/articles/PMC8471588/ /pubmed/34573843 http://dx.doi.org/10.3390/e23091218 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Moldovan, Adrian Caţaron, Angel Andonie, Răzvan Learning in Convolutional Neural Networks Accelerated by Transfer Entropy |
title | Learning in Convolutional Neural Networks Accelerated by Transfer Entropy |
title_full | Learning in Convolutional Neural Networks Accelerated by Transfer Entropy |
title_fullStr | Learning in Convolutional Neural Networks Accelerated by Transfer Entropy |
title_full_unstemmed | Learning in Convolutional Neural Networks Accelerated by Transfer Entropy |
title_short | Learning in Convolutional Neural Networks Accelerated by Transfer Entropy |
title_sort | learning in convolutional neural networks accelerated by transfer entropy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471588/ https://www.ncbi.nlm.nih.gov/pubmed/34573843 http://dx.doi.org/10.3390/e23091218 |
work_keys_str_mv | AT moldovanadrian learninginconvolutionalneuralnetworksacceleratedbytransferentropy AT cataronangel learninginconvolutionalneuralnetworksacceleratedbytransferentropy AT andonierazvan learninginconvolutionalneuralnetworksacceleratedbytransferentropy |