Cargando…
Learning in Convolutional Neural Networks Accelerated by Transfer Entropy
Recently, there is a growing interest in applying Transfer Entropy (TE) in quantifying the effective connectivity between artificial neurons. In a feedforward network, the TE can be used to quantify the relationships between neuron output pairs located in different layers. Our focus is on how to inc...
Autores principales: | Moldovan, Adrian, Caţaron, Angel, Andonie, Răzvan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471588/ https://www.ncbi.nlm.nih.gov/pubmed/34573843 http://dx.doi.org/10.3390/e23091218 |
Ejemplares similares
-
Learning in Feedforward Neural Networks Accelerated by Transfer Entropy
por: Moldovan, Adrian, et al.
Publicado: (2020) -
Transfer Information Energy: A Quantitative Indicator of Information Transfer between Time Series
por: Caţaron, Angel, et al.
Publicado: (2018) -
Semiotic Aggregation in Deep Learning
por: Muşat, Bogdan, et al.
Publicado: (2020) -
Incorrect Facemask-Wearing Detection Using Convolutional Neural Networks with Transfer Learning
por: Tomás, Jesús, et al.
Publicado: (2021) -
Recognition of industrial machine parts based on transfer learning with convolutional neural network
por: Li, Qiaoyang, et al.
Publicado: (2021)