Cargando…
The Reproducibility of Deep Learning-Based Segmentation of the Prostate Gland and Zones on T2-Weighted MR Images
Volume of interest segmentation is an essential step in computer-aided detection and diagnosis (CAD) systems. Deep learning (DL)-based methods provide good performance for prostate segmentation, but little is known about the reproducibility of these methods. In this work, an in-house collected datas...
Autores principales: | Sunoqrot, Mohammed R. S., Selnæs, Kirsten M., Sandsmark, Elise, Langørgen, Sverre, Bertilsson, Helena, Bathen, Tone F., Elschot, Mattijs |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471645/ https://www.ncbi.nlm.nih.gov/pubmed/34574031 http://dx.doi.org/10.3390/diagnostics11091690 |
Ejemplares similares
-
The impact of pre-processing and disease characteristics on reproducibility of T2-weighted MRI radiomics features
por: Dewi, Dyah Ekashanti Octorina, et al.
Publicado: (2023) -
Pseudo-T2 mapping for normalization of T2-weighted prostate MRI
por: Sørland, Kaia Ingerdatter, et al.
Publicado: (2022) -
A Quality Control System for Automated Prostate Segmentation on T2-Weighted MRI
por: Sunoqrot, Mohammed R. S., et al.
Publicado: (2020) -
Automated reference tissue normalization of T2-weighted MR images of the prostate using object recognition
por: Sunoqrot, Mohammed R. S., et al.
Publicado: (2020) -
Exploring the diagnostic potential of adding T2 dependence in diffusion-weighted MR imaging of the prostate
por: Syversen, Ingrid Framås, et al.
Publicado: (2021)