Cargando…
Towards Application-Driven Task Offloading in Edge Computing Based on Deep Reinforcement Learning
Edge computing is a new paradigm, which provides storage, computing, and network resources between the traditional cloud data center and terminal devices. In this paper, we concentrate on the application-driven task offloading problem in edge computing by considering the strong dependencies of sub-t...
Autores principales: | Sun, Ming, Bao, Tie, Xie, Dan, Lv, Hengyi, Si, Guoliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471682/ https://www.ncbi.nlm.nih.gov/pubmed/34577655 http://dx.doi.org/10.3390/mi12091011 |
Ejemplares similares
-
Federated Deep Reinforcement Learning Based Task Offloading with Power Control in Vehicular Edge Computing
por: Moon, Sungwon, et al.
Publicado: (2022) -
Deep reinforcement learning based offloading decision algorithm for vehicular edge computing
por: Hu, Xi, et al.
Publicado: (2022) -
Task Offloading Decision-Making Algorithm for Vehicular Edge Computing: A Deep-Reinforcement-Learning-Based Approach
por: Shi, Wei, et al.
Publicado: (2023) -
Deep Learning-Based Dynamic Computation Task Offloading for Mobile Edge Computing Networks
por: Yang, Shicheng, et al.
Publicado: (2022) -
Task Offloading and Resource Allocation Strategy Based on Deep Learning for Mobile Edge Computing
por: Yu, Zijia, et al.
Publicado: (2022)