Cargando…
A Cost-Efficient High-Speed VLSI Architecture for Spiking Convolutional Neural Network Inference Using Time-Step Binary Spike Maps
Neuromorphic hardware systems have been gaining ever-increasing focus in many embedded applications as they use a brain-inspired, energy-efficient spiking neural network (SNN) model that closely mimics the human cortex mechanism by communicating and processing sensory information via spatiotemporall...
Autores principales: | Zhang, Ling, Yang, Jing, Shi, Cong, Lin, Yingcheng, He, Wei, Zhou, Xichuan, Yang, Xu, Liu, Liyuan, Wu, Nanjian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471769/ https://www.ncbi.nlm.nih.gov/pubmed/34577214 http://dx.doi.org/10.3390/s21186006 |
Ejemplares similares
-
A High-Speed Low-Cost VLSI System Capable of On-Chip Online Learning for Dynamic Vision Sensor Data Classification
por: He, Wei, et al.
Publicado: (2020) -
A Low Cost VLSI Architecture for Spike Sorting Based on Feature Extraction with Peak Search
por: Chang, Yuan-Jyun, et al.
Publicado: (2016) -
An Efficient VLSI Architecture for Multi-Channel Spike Sorting Using a Generalized Hebbian Algorithm
por: Chen, Ying-Lun, et al.
Publicado: (2015) -
VLSI and computer architecture: VLSI electronics microstructure science
por: Shankar, Ravi, et al.
Publicado: (1989) -
High-Speed VLSI Interconnections
por: Goel, Ashok K
Publicado: (2007)