Cargando…
SpineDepth: A Multi-Modal Data Collection Approach for Automatic Labelling and Intraoperative Spinal Shape Reconstruction Based on RGB-D Data
Computer aided orthopedic surgery suffers from low clinical adoption, despite increased accuracy and patient safety. This can partly be attributed to cumbersome and often radiation intensive registration methods. Emerging RGB-D sensors combined with artificial intelligence data-driven methods have t...
Autores principales: | Liebmann, Florentin, Stütz, Dominik, Suter, Daniel, Jecklin, Sascha, Snedeker, Jess G., Farshad, Mazda, Fürnstahl, Philipp, Esfandiari, Hooman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8471818/ https://www.ncbi.nlm.nih.gov/pubmed/34460800 http://dx.doi.org/10.3390/jimaging7090164 |
Ejemplares similares
-
X23D—Intraoperative 3D Lumbar Spine Shape Reconstruction Based on Sparse Multi-View X-ray Data
por: Jecklin, Sascha, et al.
Publicado: (2022) -
Introducing a brain-computer interface to facilitate intraoperative medical imaging control – a feasibility study
por: Esfandiari, Hooman, et al.
Publicado: (2022) -
Intraoperative tissue classification methods in orthopedic and neurological surgeries: A systematic review
por: Massalimova, Aidana, et al.
Publicado: (2022) -
Operator independent reliability of direct augmented reality navigated pedicle screw placement and rod bending
por: Farshad, Mazda, et al.
Publicado: (2021) -
Translation of Medical AR Research into Clinical Practice
por: Seibold, Matthias, et al.
Publicado: (2023)