Cargando…
Benefits and Challenges of Jatropha Meal as Novel Biofeed for Animal Production
Jatropha curcas L. has gained importance as a source of seed oil for biodiesel production. The meal contained about 60% protein with a good balance of essential amino acids, containing various bioactive compounds, including saponins, phytic acids, trypsin inhibitors, lectins, phenolics, and flavonoi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472097/ https://www.ncbi.nlm.nih.gov/pubmed/34564573 http://dx.doi.org/10.3390/vetsci8090179 |
Sumario: | Jatropha curcas L. has gained importance as a source of seed oil for biodiesel production. The meal contained about 60% protein with a good balance of essential amino acids, containing various bioactive compounds, including saponins, phytic acids, trypsin inhibitors, lectins, phenolics, and flavonoids, which render it as a potential biofeed for animal production. The Jatropha meal demonstrated various biological activities, including antioxidant, antibacterial, and anti-inflammatory effects which enhance its property as a bio-feed. The levels of these bioactive compounds in the seeds are dependent on the genotypes. The J. curcas possessed different varieties which are either toxic or non-toxic according to the presence of phorbol esters. The presence of phorbol esters in the meal confirmed the toxic variety of Jatropha resulting in the limited application of meal as a biofeed. The Jatropha meal devoid of phorbol esters could be applied as a biofeed in the animal production industry, and for the toxic varieties, various techniques such as physicochemical and biological treatments have been introduced to the industry to remove the phorbol esters from Jatropha meal. Several studies employing various cells and animals confirmed the toxicity of the phorbol esters. The molecular mechanism of action of phorbol esters is through up-regulation of PKC-β II gene, overexpression of down-stream proto-oncogenes resulted in inflammation and oxidative stress ending by apoptotic cell death. Despite the presence of valuable bioactive compounds in the Jatropha meal, its nutritional application is not recommended unless the phorbol esters are completely removed. |
---|