Cargando…
Scalable Graphene Defect Prediction Using Transferable Learning
Notably known for its extraordinary thermal and mechanical properties, graphene is a favorable building block in various cutting-edge technologies such as flexible electronics and supercapacitors. However, the almost inevitable existence of defects severely compromises the properties of graphene, an...
Autores principales: | Zheng, Bowen, Zheng, Zeyu, Gu, Grace X. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472110/ https://www.ncbi.nlm.nih.gov/pubmed/34578657 http://dx.doi.org/10.3390/nano11092341 |
Ejemplares similares
-
Machine Learning-Based Detection of Graphene Defects with Atomic Precision
por: Zheng, Bowen, et al.
Publicado: (2020) -
Towards scalable nano-engineering of graphene
por: Martínez-Galera, A. J., et al.
Publicado: (2014) -
Self-Heating and Failure in Scalable Graphene Devices
por: Beechem, Thomas E., et al.
Publicado: (2016) -
Defects Produced during Wet Transfer Affect the Electrical Properties of Graphene
por: Zhang, Dongliang, et al.
Publicado: (2022) -
Fast and fully-scalable synthesis of reduced graphene oxide
por: Abdolhosseinzadeh, Sina, et al.
Publicado: (2015)