Cargando…
A Deep Learning System for Recognizing and Recovering Contaminated Slider Serial Numbers in Hard Disk Manufacturing Processes
This paper outlines a system for detecting printing errors and misidentifications on hard disk drive sliders, which may contribute to shipping tracking problems and incorrect product delivery to end users. A deep-learning-based technique is proposed for determining the printed identity of a slider s...
Autores principales: | Chousangsuntorn, Chousak, Tongloy, Teerawat, Chuwongin, Santhad, Boonsang, Siridech |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472306/ https://www.ncbi.nlm.nih.gov/pubmed/34577468 http://dx.doi.org/10.3390/s21186261 |
Ejemplares similares
-
Automatic recognition of parasitic products in stool examination using object detection approach
por: Naing, Kaung Myat, et al.
Publicado: (2022) -
Automatic identification of medically important mosquitoes using embedded learning approach-based image-retrieval system
por: Kittichai, Veerayuth, et al.
Publicado: (2023) -
A deep learning model (FociRad) for automated detection of γ-H2AX foci and radiation dose estimation
por: Wanotayan, Rujira, et al.
Publicado: (2022) -
Classification for avian malaria parasite Plasmodium gallinaceum blood stages by using deep convolutional neural networks
por: Kittichai, Veerayuth, et al.
Publicado: (2021) -
Deep learning approaches for challenging species and gender identification of mosquito vectors
por: Kittichai, Veerayuth, et al.
Publicado: (2021)