Cargando…
The Feasibility of Using Machine Learning to Classify Calls to South African Emergency Dispatch Centres According to Prehospital Diagnosis, by Utilising Caller Descriptions of the Incident
This paper presents the application of machine learning for classifying time-critical conditions namely sepsis, myocardial infarction and cardiac arrest, based off transcriptions of emergency calls from emergency services dispatch centers in South Africa. In this study we present results from the ap...
Autores principales: | Anthony, Tayla, Mishra, Amit Kumar, Stassen, Willem, Son, Jarryd |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472370/ https://www.ncbi.nlm.nih.gov/pubmed/34574881 http://dx.doi.org/10.3390/healthcare9091107 |
Ejemplares similares
-
Telephonic description of sepsis among callers to an emergency dispatch centre in South Africa
por: Stassen, Willem, et al.
Publicado: (2020) -
Medical dispatchers’ perception of the interaction with the caller during emergency calls - a qualitative study
por: Møller, Thea Palsgaard, et al.
Publicado: (2021) -
Prehospital triage accuracy in a criteria based dispatch centre
por: Dami, Fabrice, et al.
Publicado: (2015) -
Description of call handling in emergency medical dispatch centres in Scandinavia: recognition of out-of-hospital cardiac arrests and dispatcher-assisted CPR
por: Hardeland, Camilla, et al.
Publicado: (2021) -
The barriers and facilitators to the telephonic application of the FAST assessment for stroke in a private emergency dispatch centre in South Africa
por: Mackay, Ethan, et al.
Publicado: (2021)