Cargando…

Lower Ratio of Liver Volume and Body Weight Is a Negative Predictor of Survival after Transjugular Intrahepatic Portosystemic Shunt

Transjugular intrahepatic portosystemic shunt (TIPS) is the most effective measure to treat complications of portal hypertension. However, liver function may deteriorate after TIPS. Predictors of liver function and outcome after TIPS are therefore important for management of TIPS patients. The study...

Descripción completa

Detalles Bibliográficos
Autores principales: Schindler, Philipp, Riegel, Arne, Görlich, Dennis, Köppe, Jeanette, Seifert, Leon Louis, Masthoff, Max, Maschmeier, Miriam, Wilms, Christian, Seidensticker, Max, Köhler, Michael, Trebicka, Jonel, Heinzow, Hauke, Wildgruber, Moritz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472540/
https://www.ncbi.nlm.nih.gov/pubmed/34575680
http://dx.doi.org/10.3390/jpm11090903
Descripción
Sumario:Transjugular intrahepatic portosystemic shunt (TIPS) is the most effective measure to treat complications of portal hypertension. However, liver function may deteriorate after TIPS. Predictors of liver function and outcome after TIPS are therefore important for management of TIPS patients. The study aimed to evaluate the impact of liver volume on transplant-free survival (TFS) after TIPS, as well as the evolution of liver volume and its relationship with liver function after TIPS. A retrospective analysis of all consecutive patients who underwent TIPS in a tertiary care university liver center between 2012 and 2017 (n = 216) was performed; n = 72 patients with complete prior and follow-up (FU) computed tomography (CT) imaging studies were included in the study. Volumetry of the liver was performed by a semi-automatic 9-lobe image segmentation algorithm at baseline and FU (FU 1: 90–180 d; FU 2: 180–365 d; FU 3: 365–545 d; FU 4: 545–730 d; FU 5: >730 d). Output variables were total liver volume (TLV, cm(3)), left liver volume (LLV, cm(3)), right liver volume (RLV, cm(3)) and TLV/body weight ratio. CT derived liver volumes were correlated with liver function tests, portosystemic pressure gradient (PPG) measurements and survival. To assess predictors of liver volume change over time we fitted linear mixed models. Kaplan–Meier analysis was performed and validated by matched pair analysis followed by Cox regression to determine independent prognostic factors for survival. The median TLV at baseline was 1507.5 cm(3) (773.7–3686.0 cm(3)). Livers with higher baseline liver volumes and larger TLV/weight ratios retained their volume after an initial loss while smaller livers continuously lost volume after TIPS. At the first follow-up period (90–180 d post-TIPS) lower liver volumes and TLV/weight ratios were associated with higher bilirubin levels. Within the final multivariable model containing time (days since TIPS), baseline INR and baseline TLV, the average loss of liver volume was 0.74 mL per day after TIPS. Twelve-month overall transplant-free survival was 89% and median overall TFS was 33 months. The median TFS for a baseline TLV/body weight ratio > 20 was significantly higher compared with ≤20 (40.0 vs. 27.0 months, p = 0.010) while there were no differences regarding the indication for TIPS or etiology of liver disease in the matched pair analysis. Lower TLV/weight ratios before TIPS were associated with shorter TFS and should therefore be critically considered when selecting patients for TIPS. In addition, this study provides first evidence of an effect of TIPS on subsequent liver volume change and associated liver function.