Cargando…
Comparing Class-Aware and Pairwise Loss Functions for Deep Metric Learning in Wildlife Re-Identification †
Similarity learning using deep convolutional neural networks has been applied extensively in solving computer vision problems. This attraction is supported by its success in one-shot and zero-shot classification applications. The advances in similarity learning are essential for smaller datasets or...
Autores principales: | Dlamini, Nkosikhona, van Zyl, Terence L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472616/ https://www.ncbi.nlm.nih.gov/pubmed/34577319 http://dx.doi.org/10.3390/s21186109 |
Ejemplares similares
-
Beyond connectedness: why pairwise metrics cannot capture community stability
por: Neutel, Anje‐Margriet, et al.
Publicado: (2016) -
Deep Metric Learning for Scalable Gait-Based Person Re-Identification Using Force Platform Data
por: Duncanson, Kayne A., et al.
Publicado: (2023) -
The pairwise disconnectivity index as a new metric for the topological analysis of regulatory networks
por: Potapov, Anatolij P, et al.
Publicado: (2008) -
Performance Benchmarks for Scholarly Metrics Associated with Fisheries and Wildlife Faculty
por: Swihart, Robert K., et al.
Publicado: (2016) -
Pairwise Heuristic Sequence Alignment Algorithm Based on Deep Reinforcement Learning
Publicado: (2021)