Cargando…
Molecular Classification Models for Triple Negative Breast Cancer Subtype Using Machine Learning
Triple negative breast cancer (TNBC) lacks well-defined molecular targets and is highly heterogenous, making treatment challenging. Using gene expression analysis, TNBC has been classified into four different subtypes: basal-like immune-activated (BLIA), basal-like immune-suppressed (BLIS), mesenchy...
Autores principales: | Bissanum, Rassanee, Chaichulee, Sitthichok, Kamolphiwong, Rawikant, Navakanitworakul, Raphatphorn, Kanokwiroon, Kanyanatt |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472680/ https://www.ncbi.nlm.nih.gov/pubmed/34575658 http://dx.doi.org/10.3390/jpm11090881 |
Ejemplares similares
-
Integrated bioinformatic analysis of potential biomarkers of poor prognosis in triple-negative breast cancer
por: Bissanum, Rassanee, et al.
Publicado: (2022) -
The Anticancer Effects of FDI-6, a FOXM1 Inhibitor, on Triple Negative Breast Cancer
por: Ulhaka, Karan, et al.
Publicado: (2021) -
Proteomic profiling of urinary extracellular vesicles differentiates breast cancer patients from healthy women
por: Jeanmard, Nilobon, et al.
Publicado: (2023) -
Anticancer Potential of Fruit Extracts from Vatica diospyroides Symington Type SS and Their Effect on Program Cell Death of Cervical Cancer Cell Lines
por: Chothiphirat, Atchara, et al.
Publicado: (2019) -
Immunohistochemistry-based molecular subtyping of triple-negative breast cancer and its prognostic significance
por: Leeha, Marisa, et al.
Publicado: (2023)