Cargando…

A Recurrent De Novo Terminal Duplication of 14q32 in Korean Siblings Associated with Developmental Delay and Intellectual Disability, Growth Retardation, Facial Dysmorphism, and Cerebral Infarction: A Case Report and Literature Review

The terminal 14q32 duplication has been reported often in association with other cytogenetic abnormalities, and individuals with this specific duplication showed varying degrees of developmental delay/intellectual disability (DD/ID) and growth retardation (GR), and distinct facial dysmorphisms. Here...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Ji Yoon, Park, Joonhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472681/
https://www.ncbi.nlm.nih.gov/pubmed/34573370
http://dx.doi.org/10.3390/genes12091388
Descripción
Sumario:The terminal 14q32 duplication has been reported often in association with other cytogenetic abnormalities, and individuals with this specific duplication showed varying degrees of developmental delay/intellectual disability (DD/ID) and growth retardation (GR), and distinct facial dysmorphisms. Herein, based on the limited cases of terminal duplication of 14q32 known to date, we present new affected siblings presenting with DD/ID, GR, and facial dysmorphism, as well as cerebral infarction caused by recurrent de novo der(14)t(14;14)(p11.2;q32.1) leading to terminal duplication of 14q32. We used coverage analysis generated via duo exome sequencing, performed chromosomal microarray (CMA) as a confirmatory test, and compared our findings with those reported previously. Coverage analysis generated via duo exome sequencing revealed a 17.2 Mb heterozygous duplication at chromosome 14q32.11-q32.33 with a Z ratio ranging between 0.5 and 1 in the proband and her elder brother. As a complementary method, CMA established a terminal duplication described as the arr[hg19]14q32.11q32.33(90,043,558_107,258,824)x3 in the proband and her elder brother; however, the parents and other siblings showed normal karyotyping and no abnormal gain or loss of CMA results. Five candidate genes, BCL11B, CCNK, YY1, DYNC1H1, and PACS2, were associated with the clinical phenotypes in our cases. Although the parents had normal chromosomes, two affected cases carrying terminal duplication of 14q32 can be explained by gonadal mosaicism. Further studies are needed to establish the association between cerebrovascular events and terminal duplication of chromosome 14q32, including investigation into the cytogenetics of patients with precise clinical descriptions.