Cargando…
Artificial Intelligence-Enabled ECG Algorithm Based on Improved Residual Network for Wearable ECG
Heart disease is the leading cause of death for men and women globally. The residual network (ResNet) evolution of electrocardiogram (ECG) technology has contributed to our understanding of cardiac physiology. We propose an artificial intelligence-enabled ECG algorithm based on an improved ResNet fo...
Autores principales: | Li, Hongqiang, An, Zhixuan, Zuo, Shasha, Zhu, Wei, Zhang, Zhen, Zhang, Shanshan, Zhang, Cheng, Song, Wenchao, Mao, Quanhua, Mu, Yuxin, Li, Enbang, García, Juan Daniel Prades |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472929/ https://www.ncbi.nlm.nih.gov/pubmed/34577248 http://dx.doi.org/10.3390/s21186043 |
Ejemplares similares
-
SOI Waveguide Bragg Grating Photonic Sensor for Human Body Temperature Measurement Based on Photonic Integrated Interrogator
por: Li, Hongqiang, et al.
Publicado: (2021) -
An artificial intelligence–enabled ECG algorithm for comprehensive ECG interpretation: Can it pass the ‘Turing test’?
por: Kashou, Anthony H., et al.
Publicado: (2021) -
Artificial Intelligence-Enabled ECG Algorithm for the Prediction of Coronary Artery Calcification
por: Han, Changho, et al.
Publicado: (2022) -
Arrhythmia Evaluation in Wearable ECG Devices
por: Sadrawi, Muammar, et al.
Publicado: (2017) -
An Artificial Intelligence-Enabled ECG Algorithm for the Prediction and Localization of Angiography-Proven Coronary Artery Disease
por: Huang, Pang-Shuo, et al.
Publicado: (2022)