Cargando…

Wide Two-Degree-of-Freedom Static Laser Scanner with Miniaturized Transmission Mechanism and Piezoelectric Actuation

In recent years, laser scanners have attracted significant attention for applications such as laser radars. However, the establishment of a two-degree-of-freedom scanner that can quasi-statically drive a large mirror with a large deflection angle has proven to be challenging. In this paper, we propo...

Descripción completa

Detalles Bibliográficos
Autores principales: Ozaki, Takashi, Ohta, Norikazu, Fujiyoshi, Motohiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472955/
https://www.ncbi.nlm.nih.gov/pubmed/34577290
http://dx.doi.org/10.3390/s21186077
Descripción
Sumario:In recent years, laser scanners have attracted significant attention for applications such as laser radars. However, the establishment of a two-degree-of-freedom scanner that can quasi-statically drive a large mirror with a large deflection angle has proven to be challenging. In this paper, we propose a laser scanner design and fabrication method by combining two unimorph piezoelectric actuators composed of piezoelectric single-crystal Pb(In(1/2)Nb(1/2))O(3)-Pb(Mg(1/3)Nb(2/3))O(3)-PbTiO(3) and a miniature translation-rotation conversion mechanism with flexible polyimide hinges. The size of the entire scanner was 32 mm × 12 mm × 10 mm. We successfully demonstrated that the scanner could achieve a large quasi-static mechanical deflection angle amplitude of 20.5° in two axes with a 6-mm-square mirror.