Cargando…
Hierarchical Pooling in Graph Neural Networks to Enhance Classification Performance in Large Datasets
Deep learning methods predicated on convolutional neural networks and graph neural networks have enabled significant improvement in node classification and prediction when applied to graph representation with learning node embedding to effectively represent the hierarchical properties of graphs. An...
Autores principales: | Pham, Hai Van, Thanh, Dat Hoang, Moore, Philip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8472962/ https://www.ncbi.nlm.nih.gov/pubmed/34577277 http://dx.doi.org/10.3390/s21186070 |
Ejemplares similares
-
Interpreting the Mechanism of Synergism for Drug Combinations Using Attention-Based Hierarchical Graph Pooling
por: Dong, Zehao, et al.
Publicado: (2023) -
Combining Neuroimaging and Omics Datasets for Disease Classification Using Graph Neural Networks
por: Chan, Yi Hao, et al.
Publicado: (2022) -
Bert-Enhanced Text Graph Neural Network for Classification
por: Yang, Yiping, et al.
Publicado: (2021) -
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023) -
Dynamic Networks from Hierarchical Bayesian Graph Clustering
por: Park, Yongjin, et al.
Publicado: (2010)