Cargando…

Sinusoidal Phase-Modulated Angle Interferometer for Angular Vibration Measurement

Primary angular vibration calibration devices based on laser interferometers play a crucial role in evaluating the dynamic performance of inertial sensing devices. Here, we propose a sinusoidal phase-modulated angle interferometer (SPMAI) to realize angular vibration measurements over a frequency ra...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xianfan, Yang, Jianhua, Chen, Meng, Miao, Lijun, Huang, Tengchao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473053/
https://www.ncbi.nlm.nih.gov/pubmed/34577502
http://dx.doi.org/10.3390/s21186295
Descripción
Sumario:Primary angular vibration calibration devices based on laser interferometers play a crucial role in evaluating the dynamic performance of inertial sensing devices. Here, we propose a sinusoidal phase-modulated angle interferometer (SPMAI) to realize angular vibration measurements over a frequency range of 1–1000 Hz, in which the sinusoidal measurement retro-reflector (SMR) and the phase generation carrier (PGC) demodulation algorithm are adopted to track the dynamic angle variation. A comprehensive theoretical analysis is presented to reveal the relationship between demodulation performance of the SPMAI and several factors, such as phase modulation depth, carrier phase delay and sampling frequency. Both the simulated and experimental results demonstrate that the proposed SPMAI can achieve an angular vibration measurement with amplitude of sub-arcsecond under given parameters. Using the proposed SPMAI, the frequency bandwidth of an interferometric fiber-optic gyroscope (IFOG) is successfully determined to be 848 Hz.