Cargando…
Combining Supervised and Unsupervised Learning Algorithms for Human Activity Recognition
Human activity recognition is an extensively researched topic in the last decade. Recent methods employ supervised and unsupervised deep learning techniques in which spatial and temporal dependency is modeled. This paper proposes a novel approach for human activity recognition using skeleton data. T...
Autores principales: | Budisteanu, Elena-Alexandra, Mocanu, Irina Georgiana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473063/ https://www.ncbi.nlm.nih.gov/pubmed/34577515 http://dx.doi.org/10.3390/s21186309 |
Ejemplares similares
-
Comparing supervised and unsupervised approaches to multimodal emotion recognition
por: Fernández Carbonell, Marcos, et al.
Publicado: (2021) -
Supervised and unsupervised learning for data science
por: Berry, Michael W, et al.
Publicado: (2020) -
Combining Unsupervised and Supervised Learning for Sample Efficient Continuous Language Grounding
por: Roesler, Oliver
Publicado: (2022) -
Quantitative neuronal morphometry by supervised and unsupervised learning
por: Bijari, Kayvan, et al.
Publicado: (2021) -
Unsupervised learning algorithms
por: Celebi, M, et al.
Publicado: (2016)