Cargando…
MTU-COVNet: A hybrid methodology for diagnosing the COVID-19 pneumonia with optimized features from multi-net
PURPOSE: The aim of this study was to establish and evaluate a fully automatic deep learning system for the diagnosis of COVID-19 using thoracic computed tomography (CT). MATERIALS AND METHODS: In this retrospective study, a novel hybrid model (MTU-COVNet) was developed to extract visual features fr...
Autores principales: | Kavuran, Gürkan, İn, Erdal, Geçkil, Ayşegül Altıntop, Şahin, Mahmut, Berber, Nurcan Kırıcı |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473071/ https://www.ncbi.nlm.nih.gov/pubmed/34592696 http://dx.doi.org/10.1016/j.clinimag.2021.09.007 |
Ejemplares similares
-
Carbonic Anhydrase IX as a Marker of Disease Severity in Obstructive Sleep Apnea
por: Geçkil, Ayşegül Altıntop, et al.
Publicado: (2022) -
Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network
por: Chen, Chaoyue, et al.
Publicado: (2022) -
Automated lung cancer assessment on 18F-PET/CT using Retina U-Net and anatomical region segmentation
por: Weikert, T., et al.
Publicado: (2023) -
Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs
por: Cheng, Chi-Tung, et al.
Publicado: (2019) -
Machine learning classifiers can predict Gleason pattern 4 prostate cancer with greater accuracy than experienced radiologists
por: Antonelli, Michela, et al.
Publicado: (2019)