Cargando…
Rheological and Aging Properties of Composite Modified Bitumen by Styrene–Butadiene–Styrene and Desulfurized Crumb Rubber
Taking advantage of crumb rubber from waste tires to modify bitumen is widely for the environmentally friendly and sustainable development of pavement. This study investigated the modification mechanism, rheological, and aging properties of styrene–butadiene–styrene (SBS)/desulfurized crumb rubber (...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473106/ https://www.ncbi.nlm.nih.gov/pubmed/34577937 http://dx.doi.org/10.3390/polym13183037 |
Sumario: | Taking advantage of crumb rubber from waste tires to modify bitumen is widely for the environmentally friendly and sustainable development of pavement. This study investigated the modification mechanism, rheological, and aging properties of styrene–butadiene–styrene (SBS)/desulfurized crumb rubber (DCR) composite modified bitumen (SBS/DCRMB). Morphological features and chemical characteristics were assessed by fluorescence intensity measurement and gel permeation chromatography (GPC), respectively, and results demonstrated that the DCR and SBS modifier in SBS/DCRMB had been vulcanized and formed a three-dimensional network structure. Moreover, a comparison of the GPC elution curve showed the residual bitumen hardly changed due to carbon black released from DCR of SBS/DCRMB during the aging process of SBS/DCRMB, and the polymer molecules condensed to larger units. However, the remaining bitumen in SBSMB had changed evidently and the polymer degraded to smaller molecules. Meanwhile the rheological testing results, including multiple stress creep recovery, linear amplitude sweep and bending beam rheometer, declared that the SBS/DCRMB is superior to SBSMB before and after aging. |
---|