Cargando…
A Novel Handwritten Digit Classification System Based on Convolutional Neural Network Approach
An enormous number of CNN classification algorithms have been proposed in the literature. Nevertheless, in these algorithms, appropriate filter size selection, data preparation, limitations in datasets, and noise have not been taken into consideration. As a consequence, most of the algorithms have f...
Autores principales: | Yahya, Ali Abdullah, Tan, Jieqing, Hu, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8473116/ https://www.ncbi.nlm.nih.gov/pubmed/34577479 http://dx.doi.org/10.3390/s21186273 |
Ejemplares similares
-
Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN)
por: Ahlawat, Savita, et al.
Publicado: (2020) -
An intelligent approach for Arabic handwritten letter recognition using convolutional neural network
por: Ullah, Zahid, et al.
Publicado: (2022) -
Deep Convolutional Extreme Learning Machine and Its Application in Handwritten Digit Classification
por: Pang, Shan, et al.
Publicado: (2016) -
Neural representations of the perception of handwritten digits and visual objects from a convolutional neural network compared to humans
por: Lee, Juhyeon, et al.
Publicado: (2023) -
Novel Deep Convolutional Neural Network-Based Contextual Recognition of Arabic Handwritten Scripts
por: Ahmed, Rami, et al.
Publicado: (2021)